These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


168 related items for PubMed ID: 12855202

  • 61.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 62.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 63.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 64. Simple screening models of NAPL dissolution in the subsurface.
    Zhu J, Sykes JF.
    J Contam Hydrol; 2004 Aug; 72(1-4):245-58. PubMed ID: 15240175
    [Abstract] [Full Text] [Related]

  • 65.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 66. Effects of initial saturation on properties modification and displacement of tetrachloroethene with aqueous isobutanol.
    Boyd GR, Ocampo-Gómez AM, Li M, Husserl J.
    J Contam Hydrol; 2006 Nov 20; 88(1-2):69-91. PubMed ID: 16904790
    [Abstract] [Full Text] [Related]

  • 67. Solvent release into a sandy aquifer. 2. Estimation of DNAPL mass based on a multiple-component dissolution model.
    Broholm K, Feenstra S, Cherry JA.
    Environ Sci Technol; 2005 Jan 01; 39(1):317-24. PubMed ID: 15667112
    [Abstract] [Full Text] [Related]

  • 68.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 69. Effects of domain shapes on the morphological evolution of nonaqueous-phase-liquid dissolution fronts in fluid-saturated porous media.
    Zhao C, Hobbs BE, Ord A.
    J Contam Hydrol; 2012 Sep 01; 138-139():123-40. PubMed ID: 22892525
    [Abstract] [Full Text] [Related]

  • 70.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 71.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 72.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 73.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 74. Enhanced dissolution of TCE in NAPL by TCE-degrading bacteria in wetland soils.
    Lee S.
    J Hazard Mater; 2007 Jun 25; 145(1-2):17-22. PubMed ID: 17126487
    [Abstract] [Full Text] [Related]

  • 75. Conduction-based modeling of the biofilm anode of a microbial fuel cell.
    Kato Marcus A, Torres CI, Rittmann BE.
    Biotechnol Bioeng; 2007 Dec 15; 98(6):1171-82. PubMed ID: 17570714
    [Abstract] [Full Text] [Related]

  • 76. Biologically-enhanced removal of PCE from NAPL source zones.
    Cope N, Hughes JB.
    Environ Sci Technol; 2001 May 15; 35(10):2014-21. PubMed ID: 11393982
    [Abstract] [Full Text] [Related]

  • 77.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 78. Displacement and sweep efficiencies in a DNAPL recovery test using micellar and polymer solutions injected in a five-spot pattern.
    Martel R, Hébert A, Lefebvre R, Gélinas P, Gabriel U.
    J Contam Hydrol; 2004 Nov 15; 75(1-2):1-29. PubMed ID: 15385096
    [Abstract] [Full Text] [Related]

  • 79.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 80. Pore-scale analysis of anaerobic halorespiring bacterial growth along the transverse mixing zone of an etched silicon pore network.
    Nambi IM, Werth CJ, Sanford RA, Valocchi AJ.
    Environ Sci Technol; 2003 Dec 15; 37(24):5617-24. PubMed ID: 14717172
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.