These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


420 related items for PubMed ID: 12856186

  • 1. Calcineurin is not involved in some mitochondrial enzyme adaptations to endurance exercise training in rat skeletal muscle.
    Terada S, Nakagawa H, Nakamura Y, Muraoka I.
    Eur J Appl Physiol; 2003 Sep; 90(1-2):210-7. PubMed ID: 12856186
    [Abstract] [Full Text] [Related]

  • 2. Nonuniform effects of endurance exercise training on vasodilation in rat skeletal muscle.
    McAllister RM, Jasperse JL, Laughlin MH.
    J Appl Physiol (1985); 2005 Feb; 98(2):753-61. PubMed ID: 15448126
    [Abstract] [Full Text] [Related]

  • 3. Skeletal muscle changes after endurance training at high altitude.
    Bigard AX, Brunet A, Guezennec CY, Monod H.
    J Appl Physiol (1985); 1991 Dec; 71(6):2114-21. PubMed ID: 1778900
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Effects of Royal Jelly Administration on Endurance Training-Induced Mitochondrial Adaptations in Skeletal Muscle.
    Takahashi Y, Hijikata K, Seike K, Nakano S, Banjo M, Sato Y, Takahashi K, Hatta H.
    Nutrients; 2018 Nov 12; 10(11):. PubMed ID: 30424505
    [Abstract] [Full Text] [Related]

  • 6. Xanthine oxidase inhibition attenuates skeletal muscle signaling following acute exercise but does not impair mitochondrial adaptations to endurance training.
    Wadley GD, Nicolas MA, Hiam DS, McConell GK.
    Am J Physiol Endocrinol Metab; 2013 Apr 15; 304(8):E853-62. PubMed ID: 23462817
    [Abstract] [Full Text] [Related]

  • 7. Aging and respiratory muscle metabolic plasticity: effects of endurance training.
    Powers SK, Lawler J, Criswell D, Lieu FK, Martin D.
    J Appl Physiol (1985); 1992 Mar 15; 72(3):1068-73. PubMed ID: 1568962
    [Abstract] [Full Text] [Related]

  • 8. Mitochondrial ATP production rate in 55 to 73-year-old men: effect of endurance training.
    Berthon P, Freyssenet D, Chatard JC, Castells J, Mujika I, Geyssant A, Guezennec CY, Denis C.
    Acta Physiol Scand; 1995 Jun 15; 154(2):269-74. PubMed ID: 7572222
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. A 9-wk docosahexaenoic acid-enriched supplementation improves endurance exercise capacity and skeletal muscle mitochondrial function in adult rats.
    Le Guen M, Chaté V, Hininger-Favier I, Laillet B, Morio B, Pieroni G, Schlattner U, Pison C, Dubouchaud H.
    Am J Physiol Endocrinol Metab; 2016 Feb 01; 310(3):E213-24. PubMed ID: 26646102
    [Abstract] [Full Text] [Related]

  • 11. Age is no barrier to muscle structural, biochemical and angiogenic adaptations to training up to 24 months in female rats.
    Rossiter HB, Howlett RA, Holcombe HH, Entin PL, Wagner HE, Wagner PD.
    J Physiol; 2005 Jun 15; 565(Pt 3):993-1005. PubMed ID: 15845588
    [Abstract] [Full Text] [Related]

  • 12. Muscle morphological and biochemical adaptations to training in obese Zucker rats.
    Torgan CE, Brozinick JT, Kastello GM, Ivy JL.
    J Appl Physiol (1985); 1989 Nov 15; 67(5):1807-13. PubMed ID: 2557320
    [Abstract] [Full Text] [Related]

  • 13. Different metabolic adaptation of heart and skeletal muscles to moderate-intensity treadmill training in the rat.
    Zonderland ML, Bär PR, Reijneveld JC, Spruijt BM, Keizer HA, Glatz JF.
    Eur J Appl Physiol Occup Physiol; 1999 Apr 15; 79(5):391-6. PubMed ID: 10208246
    [Abstract] [Full Text] [Related]

  • 14. Endurance training-induced increases in expiratory muscle oxidative capacity.
    Grinton S, Powers SK, Lawler J, Criswell D, Dodd S, Edwards W.
    Med Sci Sports Exerc; 1992 May 15; 24(5):551-5. PubMed ID: 1533265
    [Abstract] [Full Text] [Related]

  • 15. Combined effects of hypoxia and endurance training on lipid metabolism in rat skeletal muscle.
    Galbès O, Goret L, Caillaud C, Mercier J, Obert P, Candau R, Py G.
    Acta Physiol (Oxf); 2008 Jun 15; 193(2):163-73. PubMed ID: 18081885
    [Abstract] [Full Text] [Related]

  • 16. Effects of beta 1- vs. beta 1- beta 2-blockade on training adaptations in rat skeletal muscle.
    Thomas DP, Jenkins RR.
    J Appl Physiol (1985); 1986 May 15; 60(5):1722-6. PubMed ID: 2872198
    [Abstract] [Full Text] [Related]

  • 17. Effect of high-intensity intermittent swimming training on fatty acid oxidation enzyme activity in rat skeletal muscle.
    Terada S, Tabata I, Higuchi M.
    Jpn J Physiol; 2004 Feb 15; 54(1):47-52. PubMed ID: 15040848
    [Abstract] [Full Text] [Related]

  • 18. Endurance exercise increases the SIRT1 and peroxisome proliferator-activated receptor gamma coactivator-1alpha protein expressions in rat skeletal muscle.
    Suwa M, Nakano H, Radak Z, Kumagai S.
    Metabolism; 2008 Jul 15; 57(7):986-98. PubMed ID: 18555842
    [Abstract] [Full Text] [Related]

  • 19. Changes in mitochondrial perilipin 3 and perilipin 5 protein content in rat skeletal muscle following endurance training and acute stimulated contraction.
    Ramos SV, Turnbull PC, MacPherson RE, LeBlanc PJ, Ward WE, Peters SJ.
    Exp Physiol; 2015 Apr 01; 100(4):450-62. PubMed ID: 25663294
    [Abstract] [Full Text] [Related]

  • 20. Glucose ingestion during endurance training does not alter adaptation.
    Akerstrom TC, Fischer CP, Plomgaard P, Thomsen C, van Hall G, Pedersen BK.
    J Appl Physiol (1985); 2009 Jun 01; 106(6):1771-9. PubMed ID: 19228984
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.