These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Acceleration of stiffness in underperfused diabetic rat hearts by glyburide, a KATP channel blocker, and its prevention by levcromakalim and insulin. Higuchi M, Miyagi K, Kayo S, Sakanashi M. Cardiovasc Res; 1997 Aug; 35(2):303-14. PubMed ID: 9349393 [Abstract] [Full Text] [Related]
3. Role of high glycogen in underperfused diabetic rat hearts with added norepinephrine. Higuchi M, Miyagi K, Nakasone J, Sakanashi M. J Cardiovasc Pharmacol; 1995 Dec; 26(6):899-907. PubMed ID: 8606526 [Abstract] [Full Text] [Related]
4. Correlation of contractile dysfunction and abnormal tissue energy metabolism during hypoperfusion with norepinephrine in isolated rat hearts: differences between normal and diabetic hearts. Higuchi M, Ikema S, Sakanashi M. J Mol Cell Cardiol; 1992 Oct; 24(10):1125-41. PubMed ID: 1479614 [Abstract] [Full Text] [Related]
5. Effects of norepinephrine on hypoperfusion-reperfusion injuries in hearts isolated from normal and diabetic rats. Higuchi M, Ikema S, Matsuzaki T, Hirayama K, Sakanashi M. J Mol Cell Cardiol; 1991 Feb; 23(2):137-48. PubMed ID: 2067023 [Abstract] [Full Text] [Related]
6. Protective effect of increased glycolytic substrate against systolic and diastolic dysfunction and increased coronary resistance from prolonged global underperfusion and reperfusion in isolated rabbit hearts perfused with erythrocyte suspensions. Eberli FR, Weinberg EO, Grice WN, Horowitz GL, Apstein CS. Circ Res; 1991 Feb; 68(2):466-81. PubMed ID: 1991351 [Abstract] [Full Text] [Related]
7. Glycolysis and glucose oxidation during reperfusion of ischemic hearts from diabetic rats. Gamble J, Lopaschuk GD. Biochim Biophys Acta; 1994 Jan 11; 1225(2):191-9. PubMed ID: 8280788 [Abstract] [Full Text] [Related]
8. Dichotomy in the post-ischemic metabolic and functional recovery profiles of isolated blood-versus buffer-perfused heart. Galiñanes M, Bernocchi P, Argano V, Cargnoni A, Ferrari R, Hearse DJ. J Mol Cell Cardiol; 1996 Mar 11; 28(3):531-9. PubMed ID: 9011636 [Abstract] [Full Text] [Related]
9. Carnitine supplementation improves myocardial function in hearts from ischemic diabetic and euglycemic rats. Keller VA, Toporoff B, Raziano RM, Pigott JD, Mills NL. Ann Thorac Surg; 1998 Nov 11; 66(5):1600-3. PubMed ID: 9875758 [Abstract] [Full Text] [Related]
10. The blood contribution to early myocardial reperfusion injury is amplified in diabetes. McDonagh PF, Hokama JY, Copeland JG, Reynolds JM. Diabetes; 1997 Nov 11; 46(11):1859-67. PubMed ID: 9356037 [Abstract] [Full Text] [Related]
11. Endothelin-1 increases susceptibility of isolated rat hearts to ischemia/reperfusion injury by reducing coronary flow. de Groot MC, Illing B, Horn M, Urban B, Haase A, Schnackerz K, Neubauer S. J Mol Cell Cardiol; 1998 Dec 11; 30(12):2657-68. PubMed ID: 9990537 [Abstract] [Full Text] [Related]
12. L-carnitine increases glucose metabolism and mechanical function following ischaemia in diabetic rat heart. Broderick TL, Quinney HA, Lopaschuk GD. Cardiovasc Res; 1995 Mar 11; 29(3):373-8. PubMed ID: 7781011 [Abstract] [Full Text] [Related]
13. Separation of inherent diastolic myocardial fiber tension and coronary vascular erectile contributions to wall stiffness of rabbit hearts damaged by ischemia, hypoxia, calcium paradox and reperfusion. Vogel WM, Briggs LL, Apstein CS. J Mol Cell Cardiol; 1985 Jan 11; 17(1):57-70. PubMed ID: 2580987 [Abstract] [Full Text] [Related]
14. Hypercholesterolemia abrogates an increased resistance of diabetic rat hearts to ischemia-reperfusion injury. Adameová A, Kuzelová M, Andelová E, Faberová V, Pancza D, Svec P, Ziegelhöffer A, Ravingerová T. Mol Cell Biochem; 2007 Jan 11; 295(1-2):129-36. PubMed ID: 16900395 [Abstract] [Full Text] [Related]
15. Protective effects of the potent Na/H exchange inhibitor methylisobutyl amiloride against post-ischemic contractile dysfunction in rat and guinea-pig hearts. Moffat MP, Karmazyn M. J Mol Cell Cardiol; 1993 Aug 11; 25(8):959-71. PubMed ID: 8263964 [Abstract] [Full Text] [Related]
16. A comparison between ranolazine and CVT-4325, a novel inhibitor of fatty acid oxidation, on cardiac metabolism and left ventricular function in rat isolated perfused heart during ischemia and reperfusion. Wang P, Fraser H, Lloyd SG, McVeigh JJ, Belardinelli L, Chatham JC. J Pharmacol Exp Ther; 2007 Apr 11; 321(1):213-20. PubMed ID: 17202401 [Abstract] [Full Text] [Related]
17. [Effects of urotensin II on isolated rat hearts under normal perfusion and ischemia reperfusion]. Zhou P, Wu SY, Yu CF, Wang H, Tang CS, Lin L, Yuan WJ. Sheng Li Xue Bao; 2003 Aug 25; 55(4):442-8. PubMed ID: 12937825 [Abstract] [Full Text] [Related]
18. Experimental conditions determine effects of ascorbic acid on reperfusion injury: comparison of tissue damage with hemodynamic parameters in rat isolated hearts. Doppelfeld IS, Parnham MJ. Methods Find Exp Clin Pharmacol; 1992 Aug 25; 14(6):419-30. PubMed ID: 1469951 [Abstract] [Full Text] [Related]
19. Effects of sustained low-flow ischemia and reperfusion on Ca2+ transients and contractility in perfused rat hearts. Seki S, Horikoshi K, Takeda H, Izumi T, Nagata A, Okumura H, Taniguchi M, Mochizuki S. Mol Cell Biochem; 2001 Jan 25; 216(1-2):111-9. PubMed ID: 11216855 [Abstract] [Full Text] [Related]
20. Triiodothyronine concomitantly inhibits calcium overload and postischemic myocardial stunning in diabetic rats. Oshiro Y, Shimabukuro M, Takasu N, Asahi T, Komiya I, Yoshida H. Life Sci; 2001 Sep 07; 69(16):1907-18. PubMed ID: 11693271 [Abstract] [Full Text] [Related] Page: [Next] [New Search]