These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


464 related items for PubMed ID: 12870701

  • 1. Mechanistic formalism for membrane transport generated by osmotic and mechanical pressure.
    Kargol M, Kargol A.
    Gen Physiol Biophys; 2003 Mar; 22(1):51-68. PubMed ID: 12870701
    [Abstract] [Full Text] [Related]

  • 2. Mechanistic approach to membrane mass transport processes (mini review).
    Kargol M.
    Cell Mol Biol Lett; 2002 Mar; 7(4):983-93. PubMed ID: 12511967
    [Abstract] [Full Text] [Related]

  • 3. On the derivation of the Kargol's mechanistic transport equations from the Kedem-Katchalsky phenomenological equations.
    Suchanek G.
    Gen Physiol Biophys; 2005 Jun; 24(2):247-58. PubMed ID: 16118476
    [Abstract] [Full Text] [Related]

  • 4. Mechanistic equations for membrane substance transport and their identity with Kedem-Katchalsky equations.
    Kargol M, Kargol A.
    Biophys Chem; 2003 Jan 21; 103(2):117-27. PubMed ID: 12568935
    [Abstract] [Full Text] [Related]

  • 5. Membrane permeability modeling: Kedem-Katchalsky vs a two-parameter formalism.
    Kleinhans FW.
    Cryobiology; 1998 Dec 21; 37(4):271-89. PubMed ID: 9917344
    [Abstract] [Full Text] [Related]

  • 6. [New method of derivation of practical Kedem-Katchalsky membrane transport equations].
    Jarzyńska M.
    Polim Med; 2005 Dec 21; 35(4):19-24. PubMed ID: 16619794
    [Abstract] [Full Text] [Related]

  • 7. [Osmo-diffusive transport through microbial cellulose membrane: the computer model simulation in 3D graphic of the dissipation energy for various values of membrane permeability parameters].
    Slezak A, Grzegorczyn S, Prochazka B.
    Polim Med; 2007 Dec 21; 37(3):47-57. PubMed ID: 18251204
    [Abstract] [Full Text] [Related]

  • 8. A development of the generalized Spiegler-Kedem-Katchalsky model equations for interactions of hydrated species in transport through polymeric membranes.
    Slezak A, Grzegorczyn S.
    Polim Med; 2006 Dec 21; 36(4):43-51. PubMed ID: 17402232
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. [Network form of the Kedem-Katchalsky equations for ternary non-electrolyte solutions. 1. Evaluation of Rij Peusner's coefficients for polymeric membrane].
    Batko KM, Slezak-Prochazka I, Slezak A.
    Polim Med; 2013 Dec 21; 43(2):93-102. PubMed ID: 24044289
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. [Mechanical pressure dependencies of the concentration boundary layers for polymeric membrane].
    Jasik-Slezak J, Zyska A, Slezak A.
    Polim Med; 2010 Dec 21; 40(1):25-9. PubMed ID: 20446526
    [Abstract] [Full Text] [Related]

  • 18. [Nonequilibrium thermodynamics model equations of the volume flow through double-membrane system with concentration polarization].
    Slezak A.
    Polim Med; 2010 Dec 21; 40(1):15-24. PubMed ID: 20446525
    [Abstract] [Full Text] [Related]

  • 19. Osmosis and solute-solvent drag: fluid transport and fluid exchange in animals and plants.
    Hammel HT, Schlegel WM.
    Cell Biochem Biophys; 2005 Dec 21; 42(3):277-345. PubMed ID: 15976460
    [Abstract] [Full Text] [Related]

  • 20. Developing Kedem-Katchalsky equations of the transmembrane transport for binary nonhomogeneous non-electrolyte solutions.
    Slezak A, Jarzyńska M.
    Polim Med; 2005 Dec 21; 35(1):15-20. PubMed ID: 16050073
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 24.