These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


96 related items for PubMed ID: 12875578

  • 1. Mucosal expression of genes encoding possible upstream regulators of Na+ transport during pneumococcal otitis media.
    Li HS, Doyle WJ, Swarts JD, Lo CY, Hebda PA.
    Acta Otolaryngol; 2003 Jun; 123(5):575-82. PubMed ID: 12875578
    [Abstract] [Full Text] [Related]

  • 2. Suppression of epithelial ion transport transcripts during pneumococcal acute otitis media in the rat.
    Li HS, Doyle WJ, Swarts JD, Hebda PA.
    Acta Otolaryngol; 2002 Jul; 122(5):488-94. PubMed ID: 12206256
    [Abstract] [Full Text] [Related]

  • 3. Analysis by cDNA microarrays of altered gene expression in middle ears of rats following pneumococcal infection.
    Lin J, Tsuboi Y, Pan W, Giebink GS, Adams GL, Kim Y.
    Int J Pediatr Otorhinolaryngol; 2002 Sep 24; 65(3):203-11. PubMed ID: 12242135
    [Abstract] [Full Text] [Related]

  • 4. Cathepsin gene expression profile in rat acute pneumococcal otitis media.
    Li-Korotky HS, Swarts JD, Hebda PA, Doyle WJ.
    Laryngoscope; 2004 Jun 24; 114(6):1032-6. PubMed ID: 15179208
    [Abstract] [Full Text] [Related]

  • 5. Gene expression profiles of early pneumococcal otitis media in the rat.
    Chen A, Li HS, Hebda PA, Zeevi A, Swarts JD.
    Int J Pediatr Otorhinolaryngol; 2005 Oct 24; 69(10):1383-93. PubMed ID: 15922460
    [Abstract] [Full Text] [Related]

  • 6. Expression of calcium-binding proteins S100A8, S100A9 and S100A12 in otitis media.
    Hong W, Khampang P, Samuels TL, Kerschner JE, Yan K, Simpson P.
    Int J Pediatr Otorhinolaryngol; 2017 Oct 24; 101():30-36. PubMed ID: 28964306
    [Abstract] [Full Text] [Related]

  • 7. Detection and localization of interleukin-6 in the rat middle ear during experimental acute otitis media, using mRNA in situ hybridization and immunohistochemistry.
    Forséni M, Melhus A, Ryan AF, Bagger-Sjöbäck D, Hultcrantz M.
    Int J Pediatr Otorhinolaryngol; 2001 Feb 24; 57(2):115-21. PubMed ID: 11165648
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Single-Cell Transcriptome Profiling Identifies Phagocytosis-Related Dual-Feature Cells in A Model of Acute Otitis Media in Rats.
    Rao Y, Zhong D, Qiu K, Cheng D, Li L, Zhang Y, Mao M, Pang W, Li D, Song Y, Li J, Dong Y, Zhang W, Yu H, Ren J, Zhao Y.
    Front Immunol; 2021 Feb 24; 12():760954. PubMed ID: 34759932
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Upregulation of messenger RNA for inflammatory cytokines in middle ear mucosa in a rat model of acute otitis media.
    Hebda PA, Alper CM, Doyle WJ, Burckart GJ, Diven WF, Zeevi A.
    Ann Otol Rhinol Laryngol; 1998 Jun 24; 107(6):501-7. PubMed ID: 9635460
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Lipoperoxidation as a measure of free radical injury in otitis media.
    Haddad J.
    Laryngoscope; 1998 Apr 24; 108(4 Pt 1):524-30. PubMed ID: 9546264
    [Abstract] [Full Text] [Related]

  • 14. The LuxS/AI-2 Quorum-Sensing System of Streptococcus pneumoniae Is Required to Cause Disease, and to Regulate Virulence- and Metabolism-Related Genes in a Rat Model of Middle Ear Infection.
    Yadav MK, Vidal JE, Go YY, Kim SH, Chae SW, Song JJ.
    Front Cell Infect Microbiol; 2018 Apr 24; 8():138. PubMed ID: 29780750
    [Abstract] [Full Text] [Related]

  • 15. Alteration of gene expression in human middle ear epithelial cells induced by influenza A virus and its implication for the pathogenesis of otitis media.
    Tong HH, Long JP, Li D, DeMaria TF.
    Microb Pathog; 2004 Oct 24; 37(4):193-204. PubMed ID: 15458780
    [Abstract] [Full Text] [Related]

  • 16. Jun N-terminal protein kinase enhances middle ear mucosal proliferation during bacterial otitis media.
    Furukawa M, Ebmeyer J, Pak K, Austin DA, Melhus A, Webster NJ, Ryan AF.
    Infect Immun; 2007 May 24; 75(5):2562-71. PubMed ID: 17325051
    [Abstract] [Full Text] [Related]

  • 17. Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media.
    Hall-Stoodley L, Hu FZ, Gieseke A, Nistico L, Nguyen D, Hayes J, Forbes M, Greenberg DP, Dice B, Burrows A, Wackym PA, Stoodley P, Post JC, Ehrlich GD, Kerschner JE.
    JAMA; 2006 Jul 12; 296(2):202-11. PubMed ID: 16835426
    [Abstract] [Full Text] [Related]

  • 18. Correlative mRNA and protein expression of middle and inner ear inflammatory cytokines during mouse acute otitis media.
    Trune DR, Kempton B, Hausman FA, Larrain BE, MacArthur CJ.
    Hear Res; 2015 Aug 12; 326():49-58. PubMed ID: 25922207
    [Abstract] [Full Text] [Related]

  • 19. Surface Proteins and Pneumolysin of Encapsulated and Nonencapsulated Streptococcus pneumoniae Mediate Virulence in a Chinchilla Model of Otitis Media.
    Keller LE, Bradshaw JL, Pipkins H, McDaniel LS.
    Front Cell Infect Microbiol; 2016 Aug 12; 6():55. PubMed ID: 27242973
    [Abstract] [Full Text] [Related]

  • 20. Heat shock proteins in acute otitis media.
    Egusa K, Huang CC, Haddad J.
    Laryngoscope; 1995 Jul 12; 105(7 Pt 1):708-13. PubMed ID: 7603274
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.