These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
629 related items for PubMed ID: 12876559
1. Three or more routes for leukocyte migration into the central nervous system. Ransohoff RM, Kivisäkk P, Kidd G. Nat Rev Immunol; 2003 Jul; 3(7):569-81. PubMed ID: 12876559 [Abstract] [Full Text] [Related]
2. Chemokines, mononuclear cells and the nervous system: heaven (or hell) is in the details. Rebenko-Moll NM, Liu L, Cardona A, Ransohoff RM. Curr Opin Immunol; 2006 Dec; 18(6):683-9. PubMed ID: 17010588 [Abstract] [Full Text] [Related]
3. Immune surveillance of the human central nervous system (CNS): different migration pathways of immune cells through the blood-brain barrier and blood-cerebrospinal fluid barrier in healthy persons. Kleine TO, Benes L. Cytometry A; 2006 Mar; 69(3):147-51. PubMed ID: 16479603 [Abstract] [Full Text] [Related]
4. Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system. Cayrol R, Wosik K, Berard JL, Dodelet-Devillers A, Ifergan I, Kebir H, Haqqani AS, Kreymborg K, Krug S, Moumdjian R, Bouthillier A, Becher B, Arbour N, David S, Stanimirovic D, Prat A. Nat Immunol; 2008 Feb; 9(2):137-45. PubMed ID: 18157132 [Abstract] [Full Text] [Related]
5. The blood-brain-barrier in multiple sclerosis: functional roles and therapeutic targeting. Correale J, Villa A. Autoimmunity; 2007 Mar; 40(2):148-60. PubMed ID: 17453713 [Abstract] [Full Text] [Related]
6. T-cell trafficking competence is required for CNS invasion. Lees JR, Archambault AS, Russell JH. J Neuroimmunol; 2006 Aug; 177(1-2):1-10. PubMed ID: 16822552 [Abstract] [Full Text] [Related]
7. Epicutaneous (EC) immunization with myelin basic protein (MBP) induces TCRalphabeta+ CD4+ CD8+ double positive suppressor cells that protect from experimental autoimmune encephalomyelitis (EAE). Tutaj M, Szczepanik M. J Autoimmun; 2007 Jun; 28(4):208-15. PubMed ID: 17442539 [Abstract] [Full Text] [Related]
8. Mechanisms of the adaptive immune response inside the central nervous system during inflammatory and autoimmune diseases. Pedemonte E, Mancardi G, Giunti D, Corcione A, Benvenuto F, Pistoia V, Uccelli A. Pharmacol Ther; 2006 Sep; 111(3):555-66. PubMed ID: 16442633 [Abstract] [Full Text] [Related]
9. Leukocyte traffic in the central nervous system: the participants and their roles. Hickey WF. Semin Immunol; 1999 Apr; 11(2):125-37. PubMed ID: 10329499 [Abstract] [Full Text] [Related]
10. Defining antigen-dependent stages of T cell migration from the blood to the central nervous system parenchyma. Archambault AS, Sim J, Gimenez MA, Russell JH. Eur J Immunol; 2005 Apr; 35(4):1076-85. PubMed ID: 15761850 [Abstract] [Full Text] [Related]
11. The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. Engelhardt B, Ransohoff RM. Trends Immunol; 2005 Sep; 26(9):485-95. PubMed ID: 16039904 [Abstract] [Full Text] [Related]
12. Encephalitogenic lymphoblast recruitment to resting CNS microvasculature: a natural immunosurveillance mechanism? Alon R. J Clin Invest; 2001 Aug; 108(4):517-9. PubMed ID: 11518723 [No Abstract] [Full Text] [Related]
13. Is damage in central nervous system due to inflammation? Chavarria A, Alcocer-Varela J. Autoimmun Rev; 2004 Jun; 3(4):251-60. PubMed ID: 15246020 [Abstract] [Full Text] [Related]
14. CCR6 regulates EAE pathogenesis by controlling regulatory CD4+ T-cell recruitment to target tissues. Villares R, Cadenas V, Lozano M, Almonacid L, Zaballos A, Martínez-A C, Varona R. Eur J Immunol; 2009 Jun; 39(6):1671-81. PubMed ID: 19499521 [Abstract] [Full Text] [Related]
15. TNFR1-dependent VCAM-1 expression by astrocytes exposes the CNS to destructive inflammation. Gimenez MA, Sim JE, Russell JH. J Neuroimmunol; 2004 Jun; 151(1-2):116-25. PubMed ID: 15145610 [Abstract] [Full Text] [Related]
16. Molecular targets for disrupting leukocyte trafficking during multiple sclerosis. McCandless EE, Klein RS. Expert Rev Mol Med; 2007 Jul 19; 9(20):1-19. PubMed ID: 17637110 [Abstract] [Full Text] [Related]
17. The role of CD8 suppressors versus destructors in autoimmune central nervous system inflammation. Zozulya AL, Wiendl H. Hum Immunol; 2008 Nov 19; 69(11):797-804. PubMed ID: 18723060 [Abstract] [Full Text] [Related]
18. The blood-central nervous system barriers actively control immune cell entry into the central nervous system. Engelhardt B. Curr Pharm Des; 2008 Nov 19; 14(16):1555-65. PubMed ID: 18673197 [Abstract] [Full Text] [Related]
19. T-cell trafficking in the central nervous system. Sallusto F, Impellizzieri D, Basso C, Laroni A, Uccelli A, Lanzavecchia A, Engelhardt B. Immunol Rev; 2012 Jul 19; 248(1):216-27. PubMed ID: 22725964 [Abstract] [Full Text] [Related]
20. Naive CD8 T-cells initiate spontaneous autoimmunity to a sequestered model antigen of the central nervous system. Na SY, Cao Y, Toben C, Nitschke L, Stadelmann C, Gold R, Schimpl A, Hünig T. Brain; 2008 Sep 19; 131(Pt 9):2353-65. PubMed ID: 18669487 [Abstract] [Full Text] [Related] Page: [Next] [New Search]