These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


161 related items for PubMed ID: 12878708

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. Sequential activity of simultaneously recorded neurons in the superior colliculus during curved saccades.
    Port NL, Wurtz RH.
    J Neurophysiol; 2003 Sep; 90(3):1887-903. PubMed ID: 12966180
    [Abstract] [Full Text] [Related]

  • 23. Contributions of prefrontal cue-, delay-, and response-period activity to the decision process of saccade direction in a free-choice ODR task.
    Watanabe K, Igaki S, Funahashi S.
    Neural Netw; 2006 Oct; 19(8):1203-22. PubMed ID: 16942859
    [Abstract] [Full Text] [Related]

  • 24. Using neuronal latency to determine sensory-motor processing pathways in reaction time tasks.
    DiCarlo JJ, Maunsell JH.
    J Neurophysiol; 2005 May; 93(5):2974-86. PubMed ID: 15548629
    [Abstract] [Full Text] [Related]

  • 25. On the role of frontal eye field in guiding attention and saccades.
    Schall JD.
    Vision Res; 2004 Jun; 44(12):1453-67. PubMed ID: 15066404
    [Abstract] [Full Text] [Related]

  • 26. Enhanced motion sensitivity follows saccadic suppression in the superior temporal sulcus of the macaque cortex.
    Ibbotson MR, Price NS, Crowder NA, Ono S, Mustari MJ.
    Cereb Cortex; 2007 May; 17(5):1129-38. PubMed ID: 16785254
    [Abstract] [Full Text] [Related]

  • 27. Corollary discharge and spatial updating: when the brain is split, is space still unified?
    Colby CL, Berman RA, Heiser LM, Saunders RC.
    Prog Brain Res; 2005 May; 149():187-205. PubMed ID: 16226585
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Electrophysiological correlates of lateral interactions in human visual cortex.
    Khoe W, Freeman E, Woldorff MG, Mangun GR.
    Vision Res; 2004 May; 44(14):1659-73. PubMed ID: 15136002
    [Abstract] [Full Text] [Related]

  • 34. Delay-period activity in visual, visuomovement, and movement neurons in the frontal eye field.
    Lawrence BM, White RL, Snyder LH.
    J Neurophysiol; 2005 Aug; 94(2):1498-508. PubMed ID: 15843482
    [Abstract] [Full Text] [Related]

  • 35. Contrasting neuronal activity in the supplementary and frontal eye fields during temporal organization of multiple saccades.
    Isoda M, Tanji J.
    J Neurophysiol; 2003 Nov; 90(5):3054-65. PubMed ID: 12904333
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Saccade-vergence interactions in macaques. II. Vergence enhancement as the product of a local feedback vergence motor error and a weighted saccadic burst.
    Busettini C, Mays LE.
    J Neurophysiol; 2005 Oct; 94(4):2312-30. PubMed ID: 15917314
    [Abstract] [Full Text] [Related]

  • 38. Comparison of shape encoding in primate dorsal and ventral visual pathways.
    Lehky SR, Sereno AB.
    J Neurophysiol; 2007 Jan; 97(1):307-19. PubMed ID: 17021033
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Postsaccadic visual references generate presaccadic compression of space.
    Lappe M, Awater H, Krekelberg B.
    Nature; 2000 Feb 24; 403(6772):892-5. PubMed ID: 10706286
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.