These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
161 related items for PubMed ID: 12878708
61. A critique of visual materials in "Evidence for an occipito-temporal tract underlying visual recognition in picture naming". Frascara J, della Puppa A, Noël G, de Pellegrin S. Clin Neurol Neurosurg; 2011 Jan; 113(1):80-1; author reply 81. PubMed ID: 20576348 [No Abstract] [Full Text] [Related]
62. Transsaccadic identification of highly similar artificial shapes. Demeyer M, De Graef P, Wagemans J, Verfaillie K. J Vis; 2009 Apr 30; 9(4):28.1-14. PubMed ID: 19757937 [Abstract] [Full Text] [Related]
63. Left-Lateralized Contributions of Saccades to Cortical Activity During a One-Back Word Recognition Task. Chang YC, Khan S, Taulu S, Kuperberg G, Brown EN, Hämäläinen MS, Temereanca S. Front Neural Circuits; 2018 Apr 30; 12():38. PubMed ID: 29867372 [Abstract] [Full Text] [Related]
64. The inferior longitudinal fasciculus: a reexamination in humans and monkeys. Tusa RJ, Ungerleider LG. Ann Neurol; 1985 Nov 30; 18(5):583-91. PubMed ID: 4073852 [Abstract] [Full Text] [Related]
70. Now you see it: frontal eye field responses to invisible targets. Assad J. Nat Neurosci; 1999 Mar 20; 2(3):205-6. PubMed ID: 10195210 [No Abstract] [Full Text] [Related]
71. During natural viewing, neural processing of visual targets continues throughout saccades. Stankov AD, Touryan J, Gordon S, Ries AJ, Ki J, Parra LC. J Vis; 2021 Sep 01; 21(10):7. PubMed ID: 34491271 [Abstract] [Full Text] [Related]
72. Saccadic eye movements, even in darkness, generate event-related potentials recorded in medial sputum and medial temporal cortex. Sobotka S, Ringo JL. Brain Res; 1997 May 09; 756(1-2):168-73. PubMed ID: 9187328 [Abstract] [Full Text] [Related]
73. Human occipital cortices differentially exert saccadic suppression: Intracranial recording in children. Uematsu M, Matsuzaki N, Brown EC, Kojima K, Asano E. Neuroimage; 2013 Dec 09; 83():224-36. PubMed ID: 23792979 [Abstract] [Full Text] [Related]
75. Occipital and inferotemporal responses to visual signals in the monkey. Ashford JW, Fuster JM. Exp Neurol; 1985 Nov 09; 90(2):444-66. PubMed ID: 4054294 [Abstract] [Full Text] [Related]
77. The wavelet transformed EEG: a new method of trial-by-trial evaluation of saccade-related cortical activity. Forgacs PB, Von Gizycki H, Harhula M, Avitable M, Selesnick I, Bodis-Wollner I. Suppl Clin Neurophysiol; 2006 Apr 05; 59():183-9. PubMed ID: 16893110 [No Abstract] [Full Text] [Related]
78. Changing human visual field organization from early visual to extra-occipital cortex. Jack AI, Patel GH, Astafiev SV, Snyder AZ, Akbudak E, Shulman GL, Corbetta M. PLoS One; 2007 May 16; 2(5):e452. PubMed ID: 17505546 [Abstract] [Full Text] [Related]
79. Visual field maps and stimulus selectivity in human ventral occipital cortex. Brewer AA, Liu J, Wade AR, Wandell BA. Nat Neurosci; 2005 Aug 16; 8(8):1102-9. PubMed ID: 16025108 [Abstract] [Full Text] [Related]
80. A corollary discharge mediates saccade-related inhibition of single units in mnemonic structures of the human brain. Katz CN, Schjetnan AGP, Patel K, Barkley V, Hoffman KL, Kalia SK, Duncan KD, Valiante TA. Curr Biol; 2022 Jul 25; 32(14):3082-3094.e4. PubMed ID: 35779529 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]