These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Pure-tone threshold estimation from extrapolated distortion product otoacoustic emission I/O-functions in normal and cochlear hearing loss ears. Boege P, Janssen T. J Acoust Soc Am; 2002 Apr; 111(4):1810-8. PubMed ID: 12002865 [Abstract] [Full Text] [Related]
6. The use of distortion product otoacoustic emission suppression as an estimate of response growth. Gorga MP, Neely ST, Dorn PA, Konrad-Martin D. J Acoust Soc Am; 2002 Jan; 111(1 Pt 1):271-84. PubMed ID: 11831801 [Abstract] [Full Text] [Related]
7. Sources of DPOAEs revealed by suppression experiments, inverse fast Fourier transforms, and SFOAEs in impaired ears. Konrad-Martin D, Neely ST, Keefe DH, Dorn PA, Cyr E, Gorga MP. J Acoust Soc Am; 2002 Apr; 111(4):1800-9. PubMed ID: 12002864 [Abstract] [Full Text] [Related]
8. Clinical test performance of distortion-product otoacoustic emissions using new stimulus conditions. Johnson TA, Neely ST, Kopun JG, Dierking DM, Tan H, Gorga MP. Ear Hear; 2010 Feb; 31(1):74-83. PubMed ID: 19701088 [Abstract] [Full Text] [Related]
9. [Effect of inner ear hearing loss on delayed otoacoustic emissions (TEOAE) and distortion products (DPOAE)]. Hoth S. Laryngorhinootologie; 1996 Dec; 75(12):709-18. PubMed ID: 9081275 [Abstract] [Full Text] [Related]
10. The influence of common stimulus parameters on distortion product otoacoustic emission fine structure. Johnson TA, Baranowski LG. Ear Hear; 2012 Dec; 33(2):239-49. PubMed ID: 21918451 [Abstract] [Full Text] [Related]
11. The level and growth behavior of the 2 f1-f2 distortion product otoacoustic emission and its relationship to auditory sensitivity in normal hearing and cochlear hearing loss. Kummer P, Janssen T, Arnold W. J Acoust Soc Am; 1998 Jun; 103(6):3431-44. PubMed ID: 9637030 [Abstract] [Full Text] [Related]
12. 2f1-f2 distortion product otoacoustic emissions in White Leghorn chickens (Gallus domesticus): effects of frequency ratio and relative level. Burkard R, Salvi R, Chen L. Audiol Neurootol; 1996 Jun; 1(4):197-213. PubMed ID: 9390802 [Abstract] [Full Text] [Related]
13. Cochlear Mechanisms and Otoacoustic Emission Test Performance. Go NA, Stamper GC, Johnson TA. Ear Hear; 2019 Jun; 40(2):401-417. PubMed ID: 29952805 [Abstract] [Full Text] [Related]
15. Frequency responses of two- and three-tone distortion product otoacoustic emissions in Mongolian gerbils. Mills DM. J Acoust Soc Am; 2000 May; 107(5 Pt 1):2586-602. PubMed ID: 10830382 [Abstract] [Full Text] [Related]
16. The influence of systematic primary-tone level variation L2-L1 on the acoustic distortion product emission 2f1-f2 in normal human ears. Hauser R, Probst R. J Acoust Soc Am; 1991 Jan; 89(1):280-6. PubMed ID: 2002169 [Abstract] [Full Text] [Related]
17. Dependence of distortion-product otoacoustic emissions on primary levels in normal and impaired ears. I. Effects of decreasing L2 below L1. Whitehead ML, McCoy MJ, Lonsbury-Martin BL, Martin GK. J Acoust Soc Am; 1995 Apr; 97(4):2346-58. PubMed ID: 7714254 [Abstract] [Full Text] [Related]
18. From laboratory to clinic: a large scale study of distortion product otoacoustic emissions in ears with normal hearing and ears with hearing loss. Gorga MP, Neely ST, Ohlrich B, Hoover B, Redner J, Peters J. Ear Hear; 1997 Dec; 18(6):440-55. PubMed ID: 9416447 [Abstract] [Full Text] [Related]
19. Cochlear generation of intermodulation distortion revealed by DPOAE frequency functions in normal and impaired ears. Stover LJ, Neely ST, Gorga MP. J Acoust Soc Am; 1999 Nov; 106(5):2669-78. PubMed ID: 10573884 [Abstract] [Full Text] [Related]
20. Fine structure of distortion product otoacoustic emissions: its dependence on age and hearing threshold and clinical implications. Wagner W, Plinkert PK, Vonthein R, Plontke SK. Eur Arch Otorhinolaryngol; 2008 Oct; 265(10):1165-72. PubMed ID: 18301908 [Abstract] [Full Text] [Related] Page: [Next] [New Search]