These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1236 related items for PubMed ID: 12885659
1. TOUCHSTONE II: a new approach to ab initio protein structure prediction. Zhang Y, Kolinski A, Skolnick J. Biophys J; 2003 Aug; 85(2):1145-64. PubMed ID: 12885659 [Abstract] [Full Text] [Related]
2. Tertiary structure predictions on a comprehensive benchmark of medium to large size proteins. Zhang Y, Skolnick J. Biophys J; 2004 Oct; 87(4):2647-55. PubMed ID: 15454459 [Abstract] [Full Text] [Related]
4. Fold assembly of small proteins using monte carlo simulations driven by restraints derived from multiple sequence alignments. Ortiz AR, Kolinski A, Skolnick J. J Mol Biol; 1998 Mar 27; 277(2):419-48. PubMed ID: 9514747 [Abstract] [Full Text] [Related]
6. TOUCHSTONE: an ab initio protein structure prediction method that uses threading-based tertiary restraints. Kihara D, Lu H, Kolinski A, Skolnick J. Proc Natl Acad Sci U S A; 2001 Aug 28; 98(18):10125-30. PubMed ID: 11504922 [Abstract] [Full Text] [Related]
7. Ab initio protein structure prediction using chunk-TASSER. Zhou H, Skolnick J. Biophys J; 2007 Sep 01; 93(5):1510-8. PubMed ID: 17496016 [Abstract] [Full Text] [Related]
8. SPICKER: a clustering approach to identify near-native protein folds. Zhang Y, Skolnick J. J Comput Chem; 2004 Apr 30; 25(6):865-71. PubMed ID: 15011258 [Abstract] [Full Text] [Related]
9. Optimizing physical energy functions for protein folding. Fujitsuka Y, Takada S, Luthey-Schulten ZA, Wolynes PG. Proteins; 2004 Jan 01; 54(1):88-103. PubMed ID: 14705026 [Abstract] [Full Text] [Related]
10. Use of residual dipolar couplings as restraints in ab initio protein structure prediction. Haliloglu T, Kolinski A, Skolnick J. Biopolymers; 2003 Dec 01; 70(4):548-62. PubMed ID: 14648765 [Abstract] [Full Text] [Related]
13. Prediction of protein structure by simulating coarse-grained folding pathways: a preliminary report. Colubri A. J Biomol Struct Dyn; 2004 Apr 01; 21(5):625-38. PubMed ID: 14769055 [Abstract] [Full Text] [Related]
14. How well can we predict native contacts in proteins based on decoy structures and their energies? Zhu J, Zhu Q, Shi Y, Liu H. Proteins; 2003 Sep 01; 52(4):598-608. PubMed ID: 12910459 [Abstract] [Full Text] [Related]
16. Analysis of TASSER-based CASP7 protein structure prediction results. Zhou H, Pandit SB, Lee SY, Borreguero J, Chen H, Wroblewska L, Skolnick J. Proteins; 2007 Sep 01; 69 Suppl 8():90-7. PubMed ID: 17705276 [Abstract] [Full Text] [Related]
17. Scoring predictive models using a reduced representation of proteins: model and energy definition. Fogolari F, Pieri L, Dovier A, Bortolussi L, Giugliarelli G, Corazza A, Esposito G, Viglino P. BMC Struct Biol; 2007 Mar 23; 7():15. PubMed ID: 17378941 [Abstract] [Full Text] [Related]
18. Ab initio protein structure prediction on a genomic scale: application to the Mycoplasma genitalium genome. Kihara D, Zhang Y, Lu H, Kolinski A, Skolnick J. Proc Natl Acad Sci U S A; 2002 Apr 30; 99(9):5993-8. PubMed ID: 11959918 [Abstract] [Full Text] [Related]
19. Analyses of simulations of three-dimensional lattice proteins in comparison with a simplified statistical mechanical model of protein folding. Abe H, Wako H. Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul 30; 74(1 Pt 1):011913. PubMed ID: 16907133 [Abstract] [Full Text] [Related]
20. Distinguishing native conformations of proteins from decoys with an effective free energy estimator based on the OPLS all-atom force field and the Surface Generalized Born solvent model. Felts AK, Gallicchio E, Wallqvist A, Levy RM. Proteins; 2002 Aug 01; 48(2):404-22. PubMed ID: 12112706 [Abstract] [Full Text] [Related] Page: [Next] [New Search]