These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


174 related items for PubMed ID: 12891627

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. Androgen receptor amplification is reflected in the transcriptional responses of Vertebral-Cancer of the Prostate cells.
    Makkonen H, Kauhanen M, Jääskeläinen T, Palvimo JJ.
    Mol Cell Endocrinol; 2011 Jan 01; 331(1):57-65. PubMed ID: 20728506
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Castration-induced increases in insulin-like growth factor-binding protein 2 promotes proliferation of androgen-independent human prostate LNCaP tumors.
    Kiyama S, Morrison K, Zellweger T, Akbari M, Cox M, Yu D, Miyake H, Gleave ME.
    Cancer Res; 2003 Jul 01; 63(13):3575-84. PubMed ID: 12839944
    [Abstract] [Full Text] [Related]

  • 26. Expression of the forkhead transcription factor FOXP1 is associated both with hypoxia inducible factors (HIFs) and the androgen receptor in prostate cancer but is not directly regulated by androgens or hypoxia.
    Banham AH, Boddy J, Launchbury R, Han C, Turley H, Malone PR, Harris AL, Fox SB.
    Prostate; 2007 Jul 01; 67(10):1091-8. PubMed ID: 17477366
    [Abstract] [Full Text] [Related]

  • 27. Phosphorylation/dephosphorylation of androgen receptor as a determinant of androgen agonistic or antagonistic activity.
    Wang LG, Liu XM, Kreis W, Budman DR.
    Biochem Biophys Res Commun; 1999 May 27; 259(1):21-8. PubMed ID: 10334909
    [Abstract] [Full Text] [Related]

  • 28. cDNA microarray analysis identifies genes induced in common by peptide growth factors and androgen in human prostate epithelial cells.
    York TP, Plymate SR, Nelson PS, Eaves LJ, Webb HD, Ware JL.
    Mol Carcinog; 2005 Dec 27; 44(4):242-51. PubMed ID: 16240454
    [Abstract] [Full Text] [Related]

  • 29. Vasoactive intestinal peptide transactivates the androgen receptor through a protein kinase A-dependent extracellular signal-regulated kinase pathway in prostate cancer LNCaP cells.
    Xie Y, Wolff DW, Lin MF, Tu Y.
    Mol Pharmacol; 2007 Jul 27; 72(1):73-85. PubMed ID: 17430995
    [Abstract] [Full Text] [Related]

  • 30. Functional localization and competition between the androgen receptor and T-cell factor for nuclear beta-catenin: a means for inhibition of the Tcf signaling axis.
    Mulholland DJ, Read JT, Rennie PS, Cox ME, Nelson CC.
    Oncogene; 2003 Aug 28; 22(36):5602-13. PubMed ID: 12944908
    [Abstract] [Full Text] [Related]

  • 31. Androgen mediated regulation and functional implications of fkbp51 expression in prostate cancer.
    Febbo PG, Lowenberg M, Thorner AR, Brown M, Loda M, Golub TR.
    J Urol; 2005 May 28; 173(5):1772-7. PubMed ID: 15821585
    [Abstract] [Full Text] [Related]

  • 32. Microarray coupled to quantitative RT-PCR analysis of androgen-regulated genes in human LNCaP prostate cancer cells.
    Ngan S, Stronach EA, Photiou A, Waxman J, Ali S, Buluwela L.
    Oncogene; 2009 May 14; 28(19):2051-63. PubMed ID: 19363526
    [Abstract] [Full Text] [Related]

  • 33. Specific block of androgen receptor activity by antisense oligonucleotides.
    Hamy F, Brondani V, Spoerri R, Rigo S, Stamm C, Klimkait T.
    Prostate Cancer Prostatic Dis; 2003 May 14; 6(1):27-33. PubMed ID: 12664061
    [Abstract] [Full Text] [Related]

  • 34. Induction of AP-1 activity by androgen activation of the androgen receptor in LNCaP human prostate carcinoma cells.
    Church DR, Lee E, Thompson TA, Basu HS, Ripple MO, Ariazi EA, Wilding G.
    Prostate; 2005 May 01; 63(2):155-68. PubMed ID: 15486991
    [Abstract] [Full Text] [Related]

  • 35. Conversion of prostate cancer from hormone independency to dependency due to AMACR inhibition: involvement of increased AR expression and decreased IGF1 expression.
    Takahara K, Azuma H, Sakamoto T, Kiyama S, Inamoto T, Ibuki N, Nishida T, Nomi H, Ubai T, Segawa N, Katsuoka Y.
    Anticancer Res; 2009 Jul 01; 29(7):2497-505. PubMed ID: 19596919
    [Abstract] [Full Text] [Related]

  • 36. Chronic azacitidine treatment results in differentiating effects, sensitizes against bicalutamide in androgen-independent prostate cancer cells.
    Gravina GL, Festuccia C, Millimaggi D, Dolo V, Tombolini V, de Vito M, Vicentini C, Bologna M.
    Prostate; 2008 May 15; 68(7):793-801. PubMed ID: 18324645
    [Abstract] [Full Text] [Related]

  • 37. Reactive oxygen species mediate androgen receptor- and serum starvation-elicited downstream signaling of ADAM9 expression in human prostate cancer cells.
    Shigemura K, Sung SY, Kubo H, Arnold RS, Fujisawa M, Gotoh A, Zhau HE, Chung LW.
    Prostate; 2007 May 15; 67(7):722-31. PubMed ID: 17342749
    [Abstract] [Full Text] [Related]

  • 38. Monomethylated selenium inhibits growth of LNCaP human prostate cancer xenograft accompanied by a decrease in the expression of androgen receptor and prostate-specific antigen (PSA).
    Lee SO, Yeon Chun J, Nadiminty N, Trump DL, Ip C, Dong Y, Gao AC.
    Prostate; 2006 Jul 01; 66(10):1070-5. PubMed ID: 16637076
    [Abstract] [Full Text] [Related]

  • 39. c-Jun enhancement of androgen receptor transactivation is associated with prostate cancer cell proliferation.
    Chen SY, Cai C, Fisher CJ, Zheng Z, Omwancha J, Hsieh CL, Shemshedini L.
    Oncogene; 2006 Nov 16; 25(54):7212-23. PubMed ID: 16732317
    [Abstract] [Full Text] [Related]

  • 40. Regulation of matrix metalloproteinase 13 expression by androgen in prostate cancer.
    Pang ST, Flores-Morales A, Skoog L, Chuan YC, Nordstedt G, Pousette A.
    Oncol Rep; 2004 Jun 16; 11(6):1187-92. PubMed ID: 15138554
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.