These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
677 related items for PubMed ID: 12899260
1. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex. Kipke DR, Vetter RJ, Williams JC, Hetke JF. IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):151-5. PubMed ID: 12899260 [Abstract] [Full Text] [Related]
2. Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex. Vetter RJ, Williams JC, Hetke JF, Nunamaker EA, Kipke DR. IEEE Trans Biomed Eng; 2004 Jun; 51(6):896-904. PubMed ID: 15188856 [Abstract] [Full Text] [Related]
3. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex. Suner S, Fellows MR, Vargas-Irwin C, Nakata GK, Donoghue JP. IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):524-41. PubMed ID: 16425835 [Abstract] [Full Text] [Related]
4. In-vivo implant mechanics of flexible, silicon-based ACREO microelectrode arrays in rat cerebral cortex. Jensen W, Yoshida K, Hofmann UG. IEEE Trans Biomed Eng; 2006 May; 53(5):934-40. PubMed ID: 16686416 [Abstract] [Full Text] [Related]
5. Ceramic-based multisite electrode arrays for chronic single-neuron recording. Moxon KA, Leiser SC, Gerhardt GA, Barbee KA, Chapin JK. IEEE Trans Biomed Eng; 2004 Apr; 51(4):647-56. PubMed ID: 15072219 [Abstract] [Full Text] [Related]
6. Toward a comparison of microelectrodes for acute and chronic recordings. Ward MP, Rajdev P, Ellison C, Irazoqui PP. Brain Res; 2009 Jul 28; 1282():183-200. PubMed ID: 19486899 [Abstract] [Full Text] [Related]
7. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface. Moxon KA, Kalkhoran NM, Markert M, Sambito MA, McKenzie JL, Webster JT. IEEE Trans Biomed Eng; 2004 Jun 28; 51(6):881-9. PubMed ID: 15188854 [Abstract] [Full Text] [Related]
8. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes. Otto KJ, Johnson MD, Kipke DR. IEEE Trans Biomed Eng; 2006 Feb 28; 53(2):333-40. PubMed ID: 16485763 [Abstract] [Full Text] [Related]
14. An economical multi-channel cortical electrode array for extended periods of recording during behavior. Rennaker RL, Ruyle AM, Street SE, Sloan AM. J Neurosci Methods; 2005 Mar 15; 142(1):97-105. PubMed ID: 15652622 [Abstract] [Full Text] [Related]
15. Biocompatible benzocyclobutene (BCB)-based neural implants with micro-fluidic channel. Lee K, He J, Clement R, Massia S, Kim B. Biosens Bioelectron; 2004 Sep 15; 20(2):404-7. PubMed ID: 15308247 [Abstract] [Full Text] [Related]
16. A novel high channel-count system for acute multisite neuronal recordings. Hofmann UG, Folkers A, Mösch F, Malina T, Menne KM, Biella G, Fagerstedt P, De Schutter E, Jensen W, Yoshida K, Hoehl D, Thomas U, Kindlundh MG, Norlin P, de Curtis M. IEEE Trans Biomed Eng; 2006 Aug 15; 53(8):1672-7. PubMed ID: 16916102 [Abstract] [Full Text] [Related]
18. Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays. Shein M, Greenbaum A, Gabay T, Sorkin R, David-Pur M, Ben-Jacob E, Hanein Y. Biomed Microdevices; 2009 Apr 15; 11(2):495-501. PubMed ID: 19067173 [Abstract] [Full Text] [Related]
19. Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers. Lee SW, Seo JM, Ha S, Kim ET, Chung H, Kim SJ. Invest Ophthalmol Vis Sci; 2009 Dec 15; 50(12):5859-66. PubMed ID: 19553608 [Abstract] [Full Text] [Related]