These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Regulation of oxidative phosphorylation in intact mammalian heart in vivo. Korzeniewski B, Noma A, Matsuoka S. Biophys Chem; 2005 Jul 01; 116(2):145-57. PubMed ID: 15950827 [Abstract] [Full Text] [Related]
3. Factors determining the oxygen consumption rate (VO2) on-kinetics in skeletal muscles. Korzeniewski B, Zoladz JA. Biochem J; 2004 May 01; 379(Pt 3):703-10. PubMed ID: 14744260 [Abstract] [Full Text] [Related]
4. Training-induced adaptation of oxidative phosphorylation in skeletal muscles. Korzeniewski B, Zoladz JA. Biochem J; 2003 Aug 15; 374(Pt 1):37-40. PubMed ID: 12741955 [Abstract] [Full Text] [Related]
5. Theoretical studies on the regulation of anaerobic glycolysis and its influence on oxidative phosphorylation in skeletal muscle. Korzeniewski B, Liguzinski P. Biophys Chem; 2004 Jul 01; 110(1-2):147-69. PubMed ID: 15223151 [Abstract] [Full Text] [Related]
7. Some factors determining the PCr recovery overshoot in skeletal muscle. Korzeniewski B, Zoladz JA. Biophys Chem; 2005 Jul 01; 116(2):129-36. PubMed ID: 15950825 [Abstract] [Full Text] [Related]
8. Regulation of oxidative phosphorylation during work transitions results from its kinetic properties. Korzeniewski B. J Appl Physiol (1985); 2014 Jan 01; 116(1):83-94. PubMed ID: 24157529 [Abstract] [Full Text] [Related]
12. Control of skeletal muscle mitochondria respiration by adenine nucleotides: differential effect of ADP and ATP according to muscle contractile type in pigs. Gueguen N, Lefaucheur L, Fillaut M, Vincent A, Herpin P. Comp Biochem Physiol B Biochem Mol Biol; 2005 Feb 01; 140(2):287-97. PubMed ID: 15649776 [Abstract] [Full Text] [Related]
13. Skeletal muscle metabolism in experimental heart failure. Bernocchi P, Ceconi C, Pedersini P, Pasini E, Curello S, Ferrari R. J Mol Cell Cardiol; 1996 Nov 01; 28(11):2263-73. PubMed ID: 8938580 [Abstract] [Full Text] [Related]
14. Uraemic muscle metabolism at rest and during exercise. Thompson CH, Kemp GJ, Barnes PR, Rajagopalan B, Styles P, Taylor DJ, Radda GK. Nephrol Dial Transplant; 1994 Nov 01; 9(11):1600-5. PubMed ID: 7870350 [Abstract] [Full Text] [Related]
15. Regulation of oxidative and glycogenolytic ATP synthesis in exercising rat skeletal muscle studied by 31P magnetic resonance spectroscopy. Kemp GJ, Sanderson AL, Thompson CH, Radda GK. NMR Biomed; 1996 Sep 01; 9(6):261-70. PubMed ID: 9073304 [Abstract] [Full Text] [Related]
16. Regulation of ATP supply during muscle contraction: theoretical studies. Korzeniewski B. Biochem J; 1998 Mar 15; 330 ( Pt 3)(Pt 3):1189-95. PubMed ID: 9494084 [Abstract] [Full Text] [Related]
17. Non-invasive assessment of oxidative capacity in young Indian men and women: a 31P magnetic resonance spectroscopy study. Rana P, Varshney A, Devi MM, Kumar P, Khushu S. Indian J Biochem Biophys; 2008 Aug 15; 45(4):263-8. PubMed ID: 18788477 [Abstract] [Full Text] [Related]
18. Endotoxemia does not limit energy supply in exercising rat skeletal muscle. Giannesini B, Izquierdo M, Dalmasso C, Le Fur Y, Cozzone PJ, Verleye M, Le Guern ME, Gillardin JM, Bendahan D. Muscle Nerve; 2008 Apr 15; 37(4):496-504. PubMed ID: 18260074 [Abstract] [Full Text] [Related]
19. Possible mechanisms underlying slow component of V̇O2 on-kinetics in skeletal muscle. Korzeniewski B, Zoladz JA. J Appl Physiol (1985); 2015 May 15; 118(10):1240-9. PubMed ID: 25767031 [Abstract] [Full Text] [Related]
20. Oxidative phosphorylation: unique regulatory mechanism and role in metabolic homeostasis. Wilson DF. J Appl Physiol (1985); 2017 Mar 01; 122(3):611-619. PubMed ID: 27789771 [Abstract] [Full Text] [Related] Page: [Next] [New Search]