These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1188 related items for PubMed ID: 12906877
1. The dynamics of interactions between Plasmodium and the mosquito: a study of the infectivity of Plasmodium berghei and Plasmodium gallinaceum, and their transmission by Anopheles stephensi, Anopheles gambiae and Aedes aegypti. Alavi Y, Arai M, Mendoza J, Tufet-Bayona M, Sinha R, Fowler K, Billker O, Franke-Fayard B, Janse CJ, Waters A, Sinden RE. Int J Parasitol; 2003 Aug; 33(9):933-43. PubMed ID: 12906877 [Abstract] [Full Text] [Related]
2. Infectivity of Plasmodium parasites to Aedes aegypti and Anopheles stephensi mosquitoes maintained on blood-free meals of SkitoSnack. Gonzales-Wartz KK, Sá JM, Lee K, Gebremicale Y, Deng B, Long CA, Pascini TV, Laughinghouse A, Moretz SE, Ortega-Villa AM, Fay MP, Wellems TE. Parasit Vectors; 2024 Jul 06; 17(1):290. PubMed ID: 38971776 [Abstract] [Full Text] [Related]
3. Plasmodium gallinaceum: mosquito peritrophic matrix and the parasite-vector compatibility. Shahabuddin M, Kaidoh T, Aikawa M, Kaslow DC. Exp Parasitol; 1995 Nov 06; 81(3):386-93. PubMed ID: 7498435 [Abstract] [Full Text] [Related]
4. The fate of Plasmodium gallinaceum in Anopheles stephensi Liston and possible barriers to transmission. Rudin W, Billingsley PF, Saladin S. Ann Soc Belg Med Trop; 1991 Nov 06; 71 Suppl 1():167-77. PubMed ID: 1793266 [Abstract] [Full Text] [Related]
5. The role of the mosquito peritrophic membrane in bloodmeal digestion and infectivity of Plasmodium species. Billingsley PF, Rudin W. J Parasitol; 1992 Jun 06; 78(3):430-40. PubMed ID: 1597785 [Abstract] [Full Text] [Related]
7. Vector competence of Aedes albopictus (Skuse) and Aedes aegypti (Linnaeus) for Plasmodium gallinaceum infection and transmission. Yurayart N, Kaewthamasorn M, Tiawsirisup S. Vet Parasitol; 2017 Jul 15; 241():20-25. PubMed ID: 28579025 [Abstract] [Full Text] [Related]
8. Motility and infectivity of Plasmodium berghei sporozoites expressing avian Plasmodium gallinaceum circumsporozoite protein. Tewari R, Rathore D, Crisanti A. Cell Microbiol; 2005 May 15; 7(5):699-707. PubMed ID: 15839899 [Abstract] [Full Text] [Related]
9. Efficiency of salivary gland invasion by malaria sporozoites is controlled by rapid sporozoite destruction in the mosquito haemocoel. Hillyer JF, Barreau C, Vernick KD. Int J Parasitol; 2007 May 15; 37(6):673-81. PubMed ID: 17275826 [Abstract] [Full Text] [Related]
10. Aedes aegypti SGS1 is critical for Plasmodium gallinaceum infection of both the mosquito midgut and salivary glands. Kojin BB, Martin-Martin I, Araújo HRC, Bonilla B, Molina-Cruz A, Calvo E, Capurro ML, Adelman ZN. Malar J; 2021 Jan 06; 20(1):11. PubMed ID: 33407511 [Abstract] [Full Text] [Related]
11. Lectin-binding sites in the midgut of the mosquitoes Anopheles stephensi Liston and Aedes aegypti L. (Diptera: Culicidae). Rudin W, Hecker H. Parasitol Res; 1989 Jan 06; 75(4):268-79. PubMed ID: 2649879 [Abstract] [Full Text] [Related]
12. Influence of midgut microbiota in Anopheles stephensi on Plasmodium berghei infections. Kalappa DM, Subramani PA, Basavanna SK, Ghosh SK, Sundaramurthy V, Uragayala S, Tiwari S, Anvikar AR, Valecha N. Malar J; 2018 Oct 25; 17(1):385. PubMed ID: 30359252 [Abstract] [Full Text] [Related]
13. Midgut epithelial responses of different mosquito-Plasmodium combinations: the actin cone zipper repair mechanism in Aedes aegypti. Gupta L, Kumar S, Han YS, Pimenta PF, Barillas-Mury C. Proc Natl Acad Sci U S A; 2005 Mar 15; 102(11):4010-5. PubMed ID: 15753303 [Abstract] [Full Text] [Related]
14. Lectin-carbohydrate recognition mechanism of Plasmodium berghei in the midgut of malaria vector Anopheles stephensi using quantum dot as a new approach. Basseri HR, Javazm MS, Farivar L, Abai MR. Acta Trop; 2016 Apr 15; 156():37-42. PubMed ID: 26772447 [Abstract] [Full Text] [Related]
15. Plasmodium gallinaceum: a novel morphology of malaria ookinetes in the midgut of the mosquito vector. Vernick KD, Fujioka H, Aikawa M. Exp Parasitol; 1999 Apr 15; 91(4):362-6. PubMed ID: 10092481 [Abstract] [Full Text] [Related]
16. Population dynamics of sporogony for Plasmodium vivax parasites from western Thailand developing within three species of colonized Anopheles mosquitoes. Zollner GE, Ponsa N, Garman GW, Poudel S, Bell JA, Sattabongkot J, Coleman RE, Vaughan JA. Malar J; 2006 Aug 03; 5():68. PubMed ID: 16887043 [Abstract] [Full Text] [Related]
17. Phenotypic dissection of a Plasmodium-refractory strain of malaria vector Anopheles stephensi: the reduced susceptibility to P. berghei and P. yoelii. Shinzawa N, Ishino T, Tachibana M, Tsuboi T, Torii M. PLoS One; 2013 Aug 03; 8(5):e63753. PubMed ID: 23717475 [Abstract] [Full Text] [Related]
18. Additional Feeding Reveals Differences in Immune Recognition and Growth of Plasmodium Parasites in the Mosquito Host. Kwon H, Simões ML, Reynolds RA, Dimopoulos G, Smith RC. mSphere; 2021 Mar 31; 6(2):. PubMed ID: 33789941 [Abstract] [Full Text] [Related]
19. Heterogeneity in patterns of malarial oocyst infections in the mosquito vector. Medley GF, Sinden RE, Fleck S, Billingsley PF, Tirawanchai N, Rodriguez MH. Parasitology; 1993 Jun 31; 106 ( Pt 5)():441-9. PubMed ID: 8341579 [Abstract] [Full Text] [Related]
20. Plasmodium gallinaceum ookinetes adhere specifically to the midgut epithelium of Aedes aegypti by interaction with a carbohydrate ligand. Zieler H, Nawrocki JP, Shahabuddin M. J Exp Biol; 1999 Mar 31; 202(Pt 5):485-95. PubMed ID: 9929452 [Abstract] [Full Text] [Related] Page: [Next] [New Search]