These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
543 related items for PubMed ID: 12909685
1. GABAA and glycine receptors in regulation of intercostal and abdominal expiratory activity in vitro in neonatal rat. Iizuka M. J Physiol; 2003 Sep 01; 551(Pt 2):617-33. PubMed ID: 12909685 [Abstract] [Full Text] [Related]
2. Intercostal expiratory activity in an in vitro brainstem-spinal cord-rib preparation from the neonatal rat. Iizuka M. J Physiol; 1999 Oct 01; 520 Pt 1(Pt 1):293-302. PubMed ID: 10517820 [Abstract] [Full Text] [Related]
3. Role of synaptic inhibition in turtle respiratory rhythm generation. Johnson SM, Wilkerson JE, Wenninger MR, Henderson DR, Mitchell GS. J Physiol; 2002 Oct 01; 544(Pt 1):253-65. PubMed ID: 12356896 [Abstract] [Full Text] [Related]
5. Spontaneous rhythmic bursts induced by pharmacological block of inhibition in lumbar motoneurons of the neonatal rat spinal cord. Bracci E, Ballerini L, Nistri A. J Neurophysiol; 1996 Feb 01; 75(2):640-7. PubMed ID: 8714641 [Abstract] [Full Text] [Related]
6. Distinct roles of glycinergic and GABAergic inhibition in coordinating locomotor-like rhythms in the neonatal mouse spinal cord. Hinckley C, Seebach B, Ziskind-Conhaim L. Neuroscience; 2005 Feb 01; 131(3):745-58. PubMed ID: 15730878 [Abstract] [Full Text] [Related]
10. Effects of volatile anesthetics on respiratory activity and chemosensitivity in the isolated brainstem-spinal cord of the newborn rat. Otsuka H. Hokkaido Igaku Zasshi; 1998 Mar 01; 73(2):117-36. PubMed ID: 9612706 [Abstract] [Full Text] [Related]
11. Role of fast inhibitory synaptic mechanisms in respiratory rhythm generation in the maturing mouse. Paton JF, Richter DW. J Physiol; 1995 Apr 15; 484 ( Pt 2)(Pt 2):505-21. PubMed ID: 7602541 [Abstract] [Full Text] [Related]
12. GABAA receptors mediate postnatal depression of respiratory frequency by barbiturates. Fregosi RF, Luo Z, Iizuka M. Respir Physiol Neurobiol; 2004 Jun 25; 140(3):219-30. PubMed ID: 15186784 [Abstract] [Full Text] [Related]
13. Inhibitory Thoracic Interneurons are not Essential to Generate the Rostro-caudal Gradient of the Thoracic Inspiratory Motor Activity in Neonatal Rat. Oka A, Iizuka M, Onimaru H, Izumizaki M. Neuroscience; 2019 Jan 15; 397():1-11. PubMed ID: 30500613 [Abstract] [Full Text] [Related]
14. Localization of rhythmogenic networks responsible for spontaneous bursts induced by strychnine and bicuculline in the rat isolated spinal cord. Bracci E, Ballerini L, Nistri A. J Neurosci; 1996 Nov 01; 16(21):7063-76. PubMed ID: 8824342 [Abstract] [Full Text] [Related]
16. Glycinergic inhibition is essential for co-ordinating cranial and spinal respiratory motor outputs in the neonatal rat. Dutschmann M, Paton JF. J Physiol; 2002 Sep 01; 543(Pt 2):643-53. PubMed ID: 12205196 [Abstract] [Full Text] [Related]
17. Neural mechanisms of sevoflurane-induced respiratory depression in newborn rats. Kuribayashi J, Sakuraba S, Kashiwagi M, Hatori E, Tsujita M, Hosokawa Y, Takeda J, Kuwana S. Anesthesiology; 2008 Aug 01; 109(2):233-42. PubMed ID: 18648232 [Abstract] [Full Text] [Related]
18. Zinc modulates primary afferent fiber-evoked responses of ventral roots in neonatal rat spinal cord in vitro. Otsuguro K, Ohta T, Ito S. Neuroscience; 2006 Aug 01; 138(1):281-91. PubMed ID: 16360285 [Abstract] [Full Text] [Related]
19. Localization of the spinal network associated with generation of hindlimb locomotion in the neonatal rat and organization of its transverse coupling system. Kremer E, Lev-Tov A. J Neurophysiol; 1997 Mar 01; 77(3):1155-70. PubMed ID: 9084588 [Abstract] [Full Text] [Related]