These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


201 related items for PubMed ID: 12910327

  • 1. Response to different environmental stress conditions of industrial and laboratory Saccharomyces cerevisiae strains.
    Garay-Arroyo A, Covarrubias AA, Clark I, Niño I, Gosset G, Martinez A.
    Appl Microbiol Biotechnol; 2004 Feb; 63(6):734-41. PubMed ID: 12910327
    [Abstract] [Full Text] [Related]

  • 2. Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors.
    Martín C, Marcet M, Almazán O, Jönsson LJ.
    Bioresour Technol; 2007 Jul; 98(9):1767-73. PubMed ID: 16934451
    [Abstract] [Full Text] [Related]

  • 3. Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae.
    Li BZ, Yuan YJ.
    Appl Microbiol Biotechnol; 2010 May; 86(6):1915-24. PubMed ID: 20309542
    [Abstract] [Full Text] [Related]

  • 4. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds.
    Keating JD, Panganiban C, Mansfield SD.
    Biotechnol Bioeng; 2006 Apr 20; 93(6):1196-206. PubMed ID: 16470880
    [Abstract] [Full Text] [Related]

  • 5. Improvement of the multiple-stress tolerance of an ethanologenic Saccharomyces cerevisiae strain by freeze-thaw treatment.
    Wei P, Li Z, Lin Y, He P, Jiang N.
    Biotechnol Lett; 2007 Oct 20; 29(10):1501-8. PubMed ID: 17541503
    [Abstract] [Full Text] [Related]

  • 6. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making.
    Pérez-Torrado R, Bruno-Bárcena JM, Matallana E.
    Appl Environ Microbiol; 2005 Nov 20; 71(11):6831-7. PubMed ID: 16269716
    [Abstract] [Full Text] [Related]

  • 7. Metabolite profiling for analysis of yeast stress response during very high gravity ethanol fermentations.
    Devantier R, Scheithauer B, Villas-Bôas SG, Pedersen S, Olsson L.
    Biotechnol Bioeng; 2005 Jun 20; 90(6):703-14. PubMed ID: 15812801
    [Abstract] [Full Text] [Related]

  • 8. Temporal quantitative proteomics of Saccharomyces cerevisiae in response to a nonlethal concentration of furfural.
    Lin FM, Tan Y, Yuan YJ.
    Proteomics; 2009 Dec 20; 9(24):5471-83. PubMed ID: 19834894
    [Abstract] [Full Text] [Related]

  • 9. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae.
    Casey E, Sedlak M, Ho NW, Mosier NS.
    FEMS Yeast Res; 2010 Jun 20; 10(4):385-93. PubMed ID: 20402796
    [Abstract] [Full Text] [Related]

  • 10. Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains.
    Liu ZL, Slininger PJ, Gorsich SW.
    Appl Biochem Biotechnol; 2005 Jun 20; 121-124():451-60. PubMed ID: 15917621
    [Abstract] [Full Text] [Related]

  • 11. Comparison of glucose/xylose cofermentation of poplar hydrolysates processed by different pretreatment technologies.
    Lu Y, Warner R, Sedlak M, Ho N, Mosier NS.
    Biotechnol Prog; 2009 Jun 20; 25(2):349-56. PubMed ID: 19319980
    [Abstract] [Full Text] [Related]

  • 12. Transcriptional profiling of Saccharomyces cerevisiae T2 cells upon exposure to hardwood spent sulphite liquor: comparison to acetic acid, furfural and hydroxymethylfurfural.
    Bajwa PK, Ho CY, Chan CK, Martin VJ, Trevors JT, Lee H.
    Antonie Van Leeuwenhoek; 2013 Jun 20; 103(6):1281-95. PubMed ID: 23539198
    [Abstract] [Full Text] [Related]

  • 13. Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts.
    Palmqvist E, Grage H, Meinander NQ, Hahn-Hägerdal B.
    Biotechnol Bioeng; 1999 Apr 05; 63(1):46-55. PubMed ID: 10099580
    [Abstract] [Full Text] [Related]

  • 14. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae.
    Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD.
    Appl Microbiol Biotechnol; 2006 Jul 05; 71(3):339-49. PubMed ID: 16222531
    [Abstract] [Full Text] [Related]

  • 15. Comparative lipidomics of four strains of Saccharomyces cerevisiae reveals different responses to furfural, phenol, and acetic acid.
    Xia JM, Yuan YJ.
    J Agric Food Chem; 2009 Jan 14; 57(1):99-108. PubMed ID: 19049411
    [Abstract] [Full Text] [Related]

  • 16. Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors.
    Liu ZL.
    Appl Microbiol Biotechnol; 2006 Nov 14; 73(1):27-36. PubMed ID: 17028874
    [Abstract] [Full Text] [Related]

  • 17. Anaerobic glycerol production by Saccharomyces cerevisiae strains under hyperosmotic stress.
    Modig T, Granath K, Adler L, Lidén G.
    Appl Microbiol Biotechnol; 2007 May 14; 75(2):289-96. PubMed ID: 17221190
    [Abstract] [Full Text] [Related]

  • 18. The response of the yeast Saccharomyces cerevisiae to sudden vs. gradual changes in environmental stress monitored by expression of the stress response protein Hsp12p.
    Nisamedtinov I, Lindsey GG, Karreman R, Orumets K, Koplimaa M, Kevvai K, Paalme T.
    FEMS Yeast Res; 2008 Sep 14; 8(6):829-38. PubMed ID: 18625028
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Stress tolerance and growth physiology of yeast strains from the Brazilian fuel ethanol industry.
    Della-Bianca BE, Gombert AK.
    Antonie Van Leeuwenhoek; 2013 Dec 14; 104(6):1083-95. PubMed ID: 24062068
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.