These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
262 related items for PubMed ID: 12913164
1. Salt stress activation of wound-related genes in tomato plants. Dombrowski JE. Plant Physiol; 2003 Aug; 132(4):2098-107. PubMed ID: 12913164 [Abstract] [Full Text] [Related]
2. The tomato mutant spr1 is defective in systemin perception and the production of a systemic wound signal for defense gene expression. Lee GI, Howe GA. Plant J; 2003 Feb; 33(3):567-76. PubMed ID: 12581314 [Abstract] [Full Text] [Related]
3. Systemin-dependent salinity tolerance in tomato: evidence of specific convergence of abiotic and biotic stress responses. Orsini F, Cascone P, De Pascale S, Barbieri G, Corrado G, Rao R, Maggio A. Physiol Plant; 2010 Jan; 138(1):10-21. PubMed ID: 19843237 [Abstract] [Full Text] [Related]
4. Suppressors of systemin signaling identify genes in the tomato wound response pathway. Howe GA, Ryan CA. Genetics; 1999 Nov; 153(3):1411-21. PubMed ID: 10545469 [Abstract] [Full Text] [Related]
5. Alternative splicing of prosystemin pre-mRNA produces two isoforms that are active as signals in the wound response pathway. Li L, Howe GA. Plant Mol Biol; 2001 Jul; 46(4):409-19. PubMed ID: 11485198 [Abstract] [Full Text] [Related]
6. Overexpression of the prosystemin gene in transgenic tomato plants generates a systemic signal that constitutively induces proteinase inhibitor synthesis. McGurl B, Orozco-Cardenas M, Pearce G, Ryan CA. Proc Natl Acad Sci U S A; 1994 Oct 11; 91(21):9799-802. PubMed ID: 7937894 [Abstract] [Full Text] [Related]
7. Systemin activates synthesis of wound-inducible tomato leaf polyphenol oxidase via the octadecanoid defense signaling pathway. Constabel CP, Bergey DR, Ryan CA. Proc Natl Acad Sci U S A; 1995 Jan 17; 92(2):407-11. PubMed ID: 7831300 [Abstract] [Full Text] [Related]
8. Expression of LeNHX isoforms in response to salt stress in salt sensitive and salt tolerant tomato species. Gálvez FJ, Baghour M, Hao G, Cagnac O, Rodríguez-Rosales MP, Venema K. Plant Physiol Biochem; 2012 Feb 17; 51():109-15. PubMed ID: 22153246 [Abstract] [Full Text] [Related]
9. The tomato suppressor of prosystemin-mediated responses2 gene encodes a fatty acid desaturase required for the biosynthesis of jasmonic acid and the production of a systemic wound signal for defense gene expression. Li C, Liu G, Xu C, Lee GI, Bauer P, Ling HQ, Ganal MW, Howe GA. Plant Cell; 2003 Jul 17; 15(7):1646-61. PubMed ID: 12837953 [Abstract] [Full Text] [Related]
10. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Orozco-Cárdenas ML, Narváez-Vásquez J, Ryan CA. Plant Cell; 2001 Jan 17; 13(1):179-91. PubMed ID: 11158538 [Abstract] [Full Text] [Related]
11. The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum). Zhu M, Chen G, Zhang J, Zhang Y, Xie Q, Zhao Z, Pan Y, Hu Z. Plant Cell Rep; 2014 Nov 17; 33(11):1851-63. PubMed ID: 25063324 [Abstract] [Full Text] [Related]
12. Induction of wound response genes in tomato leaves by bestatin, an inhibitor of aminopeptidases. Schaller A, Bergey DR, Ryan CA. Plant Cell; 1995 Nov 17; 7(11):1893-8. PubMed ID: 8535142 [Abstract] [Full Text] [Related]
13. Wounding increases salt tolerance in tomato plants: evidence on the participation of calmodulin-like activities in cross-tolerance signalling. Capiati DA, País SM, Téllez-Iñón MT. J Exp Bot; 2006 Nov 17; 57(10):2391-400. PubMed ID: 16766597 [Abstract] [Full Text] [Related]
14. A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response. Hsieh TH, Li CW, Su RC, Cheng CP, Sanjaya, Tsai YC, Chan MT. Planta; 2010 May 17; 231(6):1459-73. PubMed ID: 20358223 [Abstract] [Full Text] [Related]
15. The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea. Díaz J, ten Have A, van Kan JA. Plant Physiol; 2002 Jul 17; 129(3):1341-51. PubMed ID: 12114587 [Abstract] [Full Text] [Related]
16. Genetic engineering of the biosynthesis of glycinebetaine leads to alleviate salt-induced potassium efflux and enhances salt tolerance in tomato plants. Wei D, Zhang W, Wang C, Meng Q, Li G, Chen THH, Yang X. Plant Sci; 2017 Apr 17; 257():74-83. PubMed ID: 28224920 [Abstract] [Full Text] [Related]
17. Resistance of cultivated tomato to cell content-feeding herbivores is regulated by the octadecanoid-signaling pathway. Li C, Williams MM, Loh YT, Lee GI, Howe GA. Plant Physiol; 2002 Sep 17; 130(1):494-503. PubMed ID: 12226528 [Abstract] [Full Text] [Related]
18. A tomato ERF transcription factor, SlERF84, confers enhanced tolerance to drought and salt stress but negatively regulates immunity against Pseudomonas syringae pv. tomato DC3000. Li Z, Tian Y, Xu J, Fu X, Gao J, Wang B, Han H, Wang L, Peng R, Yao Q. Plant Physiol Biochem; 2018 Nov 17; 132():683-695. PubMed ID: 30146417 [Abstract] [Full Text] [Related]
19. Wound- and systemin-inducible calmodulin gene expression in tomato leaves. Bergey DR, Ryan CA. Plant Mol Biol; 1999 Jul 17; 40(5):815-23. PubMed ID: 10487216 [Abstract] [Full Text] [Related]
20. An octadecanoid pathway mutant (JL5) of tomato is compromised in signaling for defense against insect attack. Howe GA, Lightner J, Browse J, Ryan CA. Plant Cell; 1996 Nov 17; 8(11):2067-77. PubMed ID: 8953771 [Abstract] [Full Text] [Related] Page: [Next] [New Search]