These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
133 related items for PubMed ID: 12919730
1. Reductive activation of HCFC-123 by methaemalbumin. Zanovello A, Ferrara R, Manno M. Toxicol Lett; 2003 Sep 15; 144(1):127-36. PubMed ID: 12919730 [Abstract] [Full Text] [Related]
2. Cytochrome P450 inactivation during reductive metabolism of 1,1-dichloro-2,2,2-trifluoroethane (HCFC-123) by phenobarbital- and pyridine-induced rat liver microsomes. Ferrara R, Tolando R, King LJ, Manno M. Toxicol Appl Pharmacol; 1997 Apr 15; 143(2):420-8. PubMed ID: 9144458 [Abstract] [Full Text] [Related]
3. Suicidal inactivation of haemoproteins by reductive metabolites of halomethanes: a structure-activity relationship study. Manno M, Tolando R, Ferrara R, Rezzadore M, Cazzaro S. Toxicology; 1995 Jun 26; 100(1-3):175-83. PubMed ID: 7624875 [Abstract] [Full Text] [Related]
4. Reductive activation of 1,1-dichloro-1-fluoroethane (HCFC-141b) by phenobarbital- and pyridine-induced rat liver microsomal cytochrome P450. Tolando R, Ferrara R, Eldirdiri NI, Albores A, King LJ, Manno M. Xenobiotica; 1996 Apr 26; 26(4):425-35. PubMed ID: 9173683 [Abstract] [Full Text] [Related]
5. Metabolism of the chlorofluorocarbon substitute 1,1-dichloro-2,2,2-trifluoroethane by rat and human liver microsomes: the role of cytochrome P450 2E1. Urban G, Speerschneider P, Dekant W. Chem Res Toxicol; 1994 Apr 26; 7(2):170-6. PubMed ID: 8199305 [Abstract] [Full Text] [Related]
6. The role of cytochrome P450 2E1 in the species-dependent biotransformation of 1,2-dichloro-1,1,2-trifluoroethane in rats and mice. Dekant W, Assmann M, Urban G. Toxicol Appl Pharmacol; 1995 Dec 26; 135(2):200-7. PubMed ID: 8545828 [Abstract] [Full Text] [Related]
7. Bioactivation and toxicity in vitro of HCFC-123 and HCFC-141b: role of cytochrome P450. Zanovello A, Ferrara R, Tolando R, Bortolato S, White IN, Manno M. Toxicol Lett; 2001 Oct 15; 124(1-3):139-52. PubMed ID: 11684366 [Abstract] [Full Text] [Related]
8. The mechanism of the suicidal, reductive inactivation of microsomal cytochrome P-450 by carbon tetrachloride. Manno M, De Matteis F, King LJ. Biochem Pharmacol; 1988 May 15; 37(10):1981-90. PubMed ID: 3377806 [Abstract] [Full Text] [Related]
9. Bioactivation to free radicals and cytotoxicity of 1,1-dichloro-1-fluoroethane (HCFC-141b). Zanovello A, Tolando R, Ferrara R, Bortolato S, Manno M. Xenobiotica; 2001 Feb 15; 31(2):99-112. PubMed ID: 11407538 [Abstract] [Full Text] [Related]
10. Bioactivation and cytotoxicity of 1,1-dichloro-2,2,2-trifluoroethane (HCFC-123) in isolated rat hepatocytes. Ferrara R, Zanovello A, Bortolato S, White IN, Manno M. Pharmacol Toxicol; 2001 Apr 15; 88(4):192-7. PubMed ID: 11322177 [Abstract] [Full Text] [Related]
11. Reductive activation of halothane by human haemoglobin results in the modification of the prosthetic haem. Tolando R, Cazzaro S, Ferrara R, Rezzadore M, Manno M. Biochem Pharmacol; 1995 Jan 18; 49(2):233-41. PubMed ID: 7840801 [Abstract] [Full Text] [Related]
12. Metabolism of 1,2-dichloro-1-fluoroethane and 1-fluoro-1,2,2-trichloroethane: electronic factors govern the regioselectivity of cytochrome P450-dependent oxidation. Yin H, Anders MW, Jones JP. Chem Res Toxicol; 1996 Jan 18; 9(1):50-7. PubMed ID: 8924616 [Abstract] [Full Text] [Related]
13. Selective inactivation of rat and bovine olfactory cytochrome P450 by three haloethanes. Marini S, Longo V, Zaccaro C, De Matteis F, Gervasi PG. Toxicol Lett; 2001 Oct 15; 124(1-3):83-90. PubMed ID: 11684360 [Abstract] [Full Text] [Related]
14. Pentahaloethane-based chlorofluorocarbon substitutes and halothane: correlation of in vivo hepatic protein trifluoroacetylation and urinary trifluoroacetic acid excretion with calculated enthalpies of activation. Harris JW, Jones JP, Martin JL, LaRosa AC, Olson MJ, Pohl LR, Anders MW. Chem Res Toxicol; 1992 Oct 15; 5(5):720-5. PubMed ID: 1446014 [Abstract] [Full Text] [Related]
15. Metabolism of 1-fluoro-1,1,2-trichloroethane, 1,2-dichloro-1,1-difluoroethane, and 1,1,1-trifluoro-2-chloroethane. Yin H, Jones JP, Anders MW. Chem Res Toxicol; 1995 Mar 15; 8(2):262-8. PubMed ID: 7766810 [Abstract] [Full Text] [Related]
16. The kidney as a novel target tissue for protein adduct formation associated with metabolism of halothane and the candidate chlorofluorocarbon replacement 2,2-dichloro-1,1,1-trifluoroethane. Huwyler J, Aeschlimann D, Christen U, Gut J. Eur J Biochem; 1992 Jul 01; 207(1):229-38. PubMed ID: 1628651 [Abstract] [Full Text] [Related]
18. Human reductive halothane metabolism in vitro is catalyzed by cytochrome P450 2A6 and 3A4. Spracklin DK, Thummel KE, Kharasch ED. Drug Metab Dispos; 1996 Sep 01; 24(9):976-83. PubMed ID: 8886607 [Abstract] [Full Text] [Related]
19. Trifluoroacetylated proteins in liver and plasma of guinea pigs treated with HCFC-123 and halothane. Bortolato S, Zanovello A, Rugge M, Brotto M, Marini S, Gervasi PG, Manno M. Toxicol Lett; 2003 Sep 15; 144(1):35-47. PubMed ID: 12919722 [Abstract] [Full Text] [Related]
20. The degradation of haem by carbon tetrachloride: metabolic activation requires a free axial coordination site on the haem iron and electron donation. Manno M, King LJ, De Matteis F. Xenobiotica; 1989 Sep 15; 19(9):1023-35. PubMed ID: 2510407 [Abstract] [Full Text] [Related] Page: [Next] [New Search]