These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


199 related items for PubMed ID: 12924894

  • 1. Metal-bridging mechanism for O-O bond cleavage in cytochrome C oxidase.
    Blomberg MR, Siegbahn PE, Wikström M.
    Inorg Chem; 2003 Aug 25; 42(17):5231-43. PubMed ID: 12924894
    [Abstract] [Full Text] [Related]

  • 2. Theoretical study on electronic structures of FeOO, FeOOH, FeO(H2O), and FeO in hemes: as intermediate models of dioxygen reduction in cytochrome c oxidase.
    Yoshioka Y, Satoh H, Mitani M.
    J Inorg Biochem; 2007 Oct 25; 101(10):1410-27. PubMed ID: 17662458
    [Abstract] [Full Text] [Related]

  • 3. Proton-shuffle mechanism of O-O activation for formation of a high-valent oxo-iron species of bleomycin.
    Kumar D, Hirao H, Shaik S, Kozlowski PM.
    J Am Chem Soc; 2006 Dec 20; 128(50):16148-58. PubMed ID: 17165768
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Observation of a novel transient ferryl complex with reduced CuB in cytochrome c oxidase.
    Zaslavsky D, Smirnova IA, Adelroth P, Brzezinski P, Gennis RB.
    Biochemistry; 1999 Feb 23; 38(8):2307-11. PubMed ID: 10029523
    [Abstract] [Full Text] [Related]

  • 6. Heme-copper/dioxygen adduct formation, properties, and reactivity.
    Chufán EE, Puiu SC, Karlin KD.
    Acc Chem Res; 2007 Jul 23; 40(7):563-72. PubMed ID: 17550225
    [Abstract] [Full Text] [Related]

  • 7. Copper(I) and copper(II) complexes possessing cross-linked imidazole-phenol ligands: structures and dioxygen reactivity.
    Kamaraj K, Kim E, Galliker B, Zakharov LN, Rheingold AL, Zuberbühler AD, Karlin KD.
    J Am Chem Soc; 2003 May 21; 125(20):6028-9. PubMed ID: 12785812
    [Abstract] [Full Text] [Related]

  • 8. Proton transfer reactions associated with the reaction of the fully reduced, purified cytochrome C oxidase with molecular oxygen and ferricyanide.
    Capitanio N, Capitanio G, De Nitto E, Boffoli D, Papa S.
    Biochemistry; 2003 Apr 29; 42(16):4607-12. PubMed ID: 12705823
    [Abstract] [Full Text] [Related]

  • 9. Dioxygen reactivity of copper and heme-copper complexes possessing an imidazole-phenol cross-link.
    Kim E, Kamaraj K, Galliker B, Rubie ND, Moënne-Loccoz P, Kaderli S, Zuberbühler AD, Karlin KD.
    Inorg Chem; 2005 Mar 07; 44(5):1238-47. PubMed ID: 15732964
    [Abstract] [Full Text] [Related]

  • 10. Mechanism of Oxygen Reduction in Cytochrome c Oxidase and the Role of the Active Site Tyrosine.
    Blomberg MR.
    Biochemistry; 2016 Jan 26; 55(3):489-500. PubMed ID: 26690322
    [Abstract] [Full Text] [Related]

  • 11. Distinguishing between Cl- and O2(2-) as the bridging element between Fe3+ and Cu2+ in resting-oxidized cytochrome c oxidase.
    Suga M, Yano N, Muramoto K, Shinzawa-Itoh K, Maeda T, Yamashita E, Tsukihara T, Yoshikawa S.
    Acta Crystallogr D Biol Crystallogr; 2011 Aug 26; 67(Pt 8):742-4. PubMed ID: 21795816
    [Abstract] [Full Text] [Related]

  • 12. Assigning vibrational spectra of ferryl-oxo intermediates of cytochrome C oxidase by periodic orbits and molecular dynamics.
    Daskalakis V, Farantos SC, Varotsis C.
    J Am Chem Soc; 2008 Sep 17; 130(37):12385-93. PubMed ID: 18712866
    [Abstract] [Full Text] [Related]

  • 13. Formation and spectroscopic characterization of the dioxygen adduct of a heme-Cu complex possessing a cross-linked tyrosine-histidine mimic: modeling the active site of cytochrome c oxidase.
    Liu JG, Naruta Y, Tani F, Chishiro T, Tachi Y.
    Chem Commun (Camb); 2004 Jan 07; (1):120-1. PubMed ID: 14737361
    [Abstract] [Full Text] [Related]

  • 14. The amide oxygen donor. Metal ion coordinating properties of the ligand nitrilotriacetamide. A thermodynamic and crystallographic study.
    Clapp LA, Siddons CJ, VanDerveer DG, Reibenspies JH, Jones SB, Hancock RD.
    Dalton Trans; 2006 Apr 28; (16):2001-7. PubMed ID: 16609771
    [Abstract] [Full Text] [Related]

  • 15. Complete mechanism of sigma* intramolecular aromatic hydroxylation through O2 activation by a macrocyclic dicopper(I) complex.
    Poater A, Ribas X, Llobet A, Cavallo L, Solà M.
    J Am Chem Soc; 2008 Dec 31; 130(52):17710-7. PubMed ID: 19055343
    [Abstract] [Full Text] [Related]

  • 16. Iron(III) complexes of tripodal monophenolate ligands as models for non-heme catechol dioxygenase enzymes: correlation of dioxygenase activity with ligand stereoelectronic properties.
    Mayilmurugan R, Visvaganesan K, Suresh E, Palaniandavar M.
    Inorg Chem; 2009 Sep 21; 48(18):8771-83. PubMed ID: 19694480
    [Abstract] [Full Text] [Related]

  • 17. Synthetic models of the active site of cytochrome C oxidase: influence of tridentate or tetradentate copper chelates bearing a His--Tyr linkage mimic on dioxygen adduct formation by heme/Cu complexes.
    Liu JG, Naruta Y, Tani F.
    Chemistry; 2007 Sep 21; 13(22):6365-78. PubMed ID: 17503416
    [Abstract] [Full Text] [Related]

  • 18. Mechanism for catechol ring cleavage by non-heme iron intradiol dioxygenases: a hybrid DFT study.
    Borowski T, Siegbahn PE.
    J Am Chem Soc; 2006 Oct 04; 128(39):12941-53. PubMed ID: 17002391
    [Abstract] [Full Text] [Related]

  • 19. O-O bond splitting mechanism in cytochrome oxidase.
    Blomberg MR, Siegbahn PE, Babcock GT, Wikström M.
    J Inorg Biochem; 2000 Jul 01; 80(3-4):261-9. PubMed ID: 11001098
    [Abstract] [Full Text] [Related]

  • 20. 2:2 Fe(III):ligand and "adamantane core" 4:2 Fe(III):ligand (hydr)oxo complexes of an acyclic ditopic ligand.
    Ghiladi M, Larsen FB, McKenzie CJ, Sotofte I, Tuchagues JP.
    Dalton Trans; 2005 May 05; (9):1687-92. PubMed ID: 15852119
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.