These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
219 related items for PubMed ID: 12930557
1. Acid-base status of critically ill patients with acute renal failure: analysis based on Stewart-Figge methodology. Rocktaeschel J, Morimatsu H, Uchino S, Goldsmith D, Poustie S, Story D, Gutteridge G, Bellomo R. Crit Care; 2003 Aug; 7(4):R60. PubMed ID: 12930557 [Abstract] [Full Text] [Related]
2. Unmeasured anions in critically ill patients: can they predict mortality? Rocktaeschel J, Morimatsu H, Uchino S, Bellomo R. Crit Care Med; 2003 Aug; 31(8):2131-6. PubMed ID: 12973170 [Abstract] [Full Text] [Related]
3. Impact of continuous veno-venous hemofiltration on acid-base balance. Rocktäschel J, Morimatsu H, Uchino S, Ronco C, Bellomo R. Int J Artif Organs; 2003 Jan; 26(1):19-25. PubMed ID: 12602465 [Abstract] [Full Text] [Related]
4. Contribution of various metabolites to the "unmeasured" anions in critically ill patients with metabolic acidosis. Moviat M, Terpstra AM, Ruitenbeek W, Kluijtmans LA, Pickkers P, van der Hoeven JG. Crit Care Med; 2008 Mar; 36(3):752-8. PubMed ID: 18176310 [Abstract] [Full Text] [Related]
5. Stewart analysis of apparently normal acid-base state in the critically ill. Moviat M, van den Boogaard M, Intven F, van der Voort P, van der Hoeven H, Pickkers P. J Crit Care; 2013 Dec; 28(6):1048-54. PubMed ID: 23910568 [Abstract] [Full Text] [Related]
6. Bench-to-bedside review: treating acid-base abnormalities in the intensive care unit--the role of renal replacement therapy. Naka T, Bellomo R. Crit Care; 2004 Apr; 8(2):108-14. PubMed ID: 15025771 [Abstract] [Full Text] [Related]
7. Acid-base balance in combined severe hepatic and renal failure: a quantitative analysis. Naka T, Bellomo R, Morimatsu H, Rocktaschel J, Wan L, Gow P, Angus P. Int J Artif Organs; 2008 Apr; 31(4):288-94. PubMed ID: 18432583 [Abstract] [Full Text] [Related]
8. Acid-base balance during continuous veno-venous hemofiltration: the impact of severe hepatic failure. Naka T, Bellomo R, Morimatsu H, Rocktaschel J, Wan L, Gow P, Angus P. Int J Artif Organs; 2006 Jul; 29(7):668-74. PubMed ID: 16874671 [Abstract] [Full Text] [Related]
9. Unmeasured anions identified by the Fencl-Stewart method predict mortality better than base excess, anion gap, and lactate in patients in the pediatric intensive care unit. Balasubramanyan N, Havens PL, Hoffman GM. Crit Care Med; 1999 Aug; 27(8):1577-81. PubMed ID: 10470767 [Abstract] [Full Text] [Related]
10. Diagnosing metabolic acidosis in the critically ill: bridging the anion gap, Stewart, and base excess methods. Fidkowski C, Helstrom J. Can J Anaesth; 2009 Mar; 56(3):247-56. PubMed ID: 19247746 [Abstract] [Full Text] [Related]
11. [Does Stewart-Fencl improve the evaluation of acid-base status in stable patients on hemodiafiltration?]. Hernández Jaras J, Rico Salvador I, Torregrosa de Juan E, Pons Prades R, Rius Peris A, Fenollosa Segarra MA, Sánchez Canel JJ, Carbajo Mateo T. Nefrologia; 2010 Mar; 30(2):214-9. PubMed ID: 20038966 [Abstract] [Full Text] [Related]
12. Conventional or physicochemical approach in intensive care unit patients with metabolic acidosis. Moviat M, van Haren F, van der Hoeven H. Crit Care; 2003 Jun; 7(3):R41-5. PubMed ID: 12793889 [Abstract] [Full Text] [Related]
13. Impact of chloride balance in acidosis control: the Stewart approach in hemodialysis critically ill patients. Libório AB, da Silva Alexandre C, Noritomi DT, Andrade L, Seguro AC. J Crit Care; 2006 Dec; 21(4):333-8. PubMed ID: 17175420 [Abstract] [Full Text] [Related]
14. Defining metabolic acidosis in patients with septic shock using Stewart approach. Mallat J, Michel D, Salaun P, Thevenin D, Tronchon L. Am J Emerg Med; 2012 Mar; 30(3):391-8. PubMed ID: 21277142 [Abstract] [Full Text] [Related]
15. Low-dose citrate continuous veno-venous hemofiltration (CVVH) and acid-base balance. Naka T, Egi M, Bellomo R, Cole L, French C, Wan L, Fealy N, Baldwin I. Int J Artif Organs; 2005 Mar; 28(3):222-8. PubMed ID: 15818544 [Abstract] [Full Text] [Related]
16. The acidifying effect of lactate is neutralized by the alkalinizing effect of hypoalbuminemia in non-paracetamol-induced acute liver failure. Funk GC, Doberer D, Fuhrmann V, Holzinger U, Kitzberger R, Kneidinger N, Lindner G, Schneeweiss B. J Hepatol; 2006 Sep; 45(3):387-92. PubMed ID: 16750869 [Abstract] [Full Text] [Related]
17. Lactate versus non-lactate metabolic acidosis: a retrospective outcome evaluation of critically ill patients. Gunnerson KJ, Saul M, He S, Kellum JA. Crit Care; 2006 Feb; 10(1):R22. PubMed ID: 16507145 [Abstract] [Full Text] [Related]
18. The early phase of critical illness is a progressive acidic state due to unmeasured anions. Antonini B, Piva S, Paltenghi M, Candiani A, Latronico N. Eur J Anaesthesiol; 2008 Jul; 25(7):566-71. PubMed ID: 18339216 [Abstract] [Full Text] [Related]
19. [Assessment of metabolic acidosis in critically ill patients: method of Stewart-Fencl-Figge versus the traditional henderson-hasselbalch approach]. Barbosa MB, Alves Cde A, Queiroz Filho H. Rev Bras Ter Intensiva; 2006 Dec; 18(4):380-4. PubMed ID: 25310552 [Abstract] [Full Text] [Related]
20. Prediction of mortality with unmeasured anions in critically ill patients on mechanical ventilation. Novović MN, Jevdjićt J. Vojnosanit Pregl; 2014 Oct; 71(10):936-41. PubMed ID: 25518273 [Abstract] [Full Text] [Related] Page: [Next] [New Search]