These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
307 related items for PubMed ID: 12939148
1. Use of 2-aminopurine fluorescence to examine conformational changes during nucleotide incorporation by DNA polymerase I (Klenow fragment). Purohit V, Grindley ND, Joyce CM. Biochemistry; 2003 Sep 02; 42(34):10200-11. PubMed ID: 12939148 [Abstract] [Full Text] [Related]
2. Conformational changes during normal and error-prone incorporation of nucleotides by a Y-family DNA polymerase detected by 2-aminopurine fluorescence. DeLucia AM, Grindley ND, Joyce CM. Biochemistry; 2007 Sep 25; 46(38):10790-803. PubMed ID: 17725324 [Abstract] [Full Text] [Related]
3. The nucleotide analog 2-aminopurine as a spectroscopic probe of nucleotide incorporation by the Klenow fragment of Escherichia coli polymerase I and bacteriophage T4 DNA polymerase. Frey MW, Sowers LC, Millar DP, Benkovic SJ. Biochemistry; 1995 Jul 18; 34(28):9185-92. PubMed ID: 7619819 [Abstract] [Full Text] [Related]
4. DNA polymerase beta: multiple conformational changes in the mechanism of catalysis. Zhong X, Patel SS, Werneburg BG, Tsai MD. Biochemistry; 1997 Sep 30; 36(39):11891-900. PubMed ID: 9305982 [Abstract] [Full Text] [Related]
5. Fingers-closing and other rapid conformational changes in DNA polymerase I (Klenow fragment) and their role in nucleotide selectivity. Joyce CM, Potapova O, Delucia AM, Huang X, Basu VP, Grindley ND. Biochemistry; 2008 Jun 10; 47(23):6103-16. PubMed ID: 18473481 [Abstract] [Full Text] [Related]
6. Fluorescence of 2-aminopurine reveals rapid conformational changes in the RB69 DNA polymerase-primer/template complexes upon binding and incorporation of matched deoxynucleoside triphosphates. Zhang H, Cao W, Zakharova E, Konigsberg W, De La Cruz EM. Nucleic Acids Res; 2007 Jun 10; 35(18):6052-62. PubMed ID: 17766250 [Abstract] [Full Text] [Related]
7. Conformational dynamics of DNA polymerase probed with a novel fluorescent DNA base analogue. Stengel G, Gill JP, Sandin P, Wilhelmsson LM, Albinsson B, Nordén B, Millar D. Biochemistry; 2007 Oct 30; 46(43):12289-97. PubMed ID: 17915941 [Abstract] [Full Text] [Related]
8. Interaction of DNA polymerase I (Klenow fragment) with DNA substrates containing extrahelical bases: implications for proofreading of frameshift errors during DNA synthesis. Lam WC, Van der Schans EJ, Sowers LC, Millar DP. Biochemistry; 1999 Mar 02; 38(9):2661-8. PubMed ID: 10052936 [Abstract] [Full Text] [Related]
9. Significance of the O-helix residues of Escherichia coli DNA polymerase I in DNA synthesis: dynamics of the dNTP binding pocket. Kaushik N, Pandey VN, Modak MJ. Biochemistry; 1996 Jun 04; 35(22):7256-66. PubMed ID: 8679555 [Abstract] [Full Text] [Related]
10. Using 2-aminopurine fluorescence to detect bacteriophage T4 DNA polymerase-DNA complexes that are important for primer extension and proofreading reactions. Hariharan C, Reha-Krantz LJ. Biochemistry; 2005 Dec 06; 44(48):15674-84. PubMed ID: 16313170 [Abstract] [Full Text] [Related]
11. How E. coli DNA polymerase I (Klenow fragment) distinguishes between deoxy- and dideoxynucleotides. Astatke M, Grindley ND, Joyce CM. J Mol Biol; 1998 Apr 24; 278(1):147-65. PubMed ID: 9571040 [Abstract] [Full Text] [Related]
12. Probing DNA polymerase-DNA interactions: examining the template strand in exonuclease complexes using 2-aminopurine fluorescence and acrylamide quenching. Tleugabulova D, Reha-Krantz LJ. Biochemistry; 2007 Jun 05; 46(22):6559-69. PubMed ID: 17497891 [Abstract] [Full Text] [Related]
13. Recognition of sequence-directed DNA structure by the Klenow fragment of DNA polymerase I. Carver TE, Millar DP. Biochemistry; 1998 Feb 17; 37(7):1898-904. PubMed ID: 9485315 [Abstract] [Full Text] [Related]
14. Klenow fragment-DNA interaction required for the incorporation of nucleotides opposite guanine and O6-methylguanine. Spratt TE. Biochemistry; 1997 Oct 28; 36(43):13292-7. PubMed ID: 9341220 [Abstract] [Full Text] [Related]
15. Influence of 5'-nearest neighbors on the insertion kinetics of the fluorescent nucleotide analog 2-aminopurine by Klenow fragment. Bloom LB, Otto MR, Beechem JM, Goodman MF. Biochemistry; 1993 Oct 19; 32(41):11247-58. PubMed ID: 8218190 [Abstract] [Full Text] [Related]
16. Use of 2-aminopurine and tryptophan fluorescence as probes in kinetic analyses of DNA polymerase beta. Dunlap CA, Tsai MD. Biochemistry; 2002 Sep 17; 41(37):11226-35. PubMed ID: 12220188 [Abstract] [Full Text] [Related]
17. DNA polymerase beta: pre-steady-state kinetic analysis and roles of arginine-283 in catalysis and fidelity. Werneburg BG, Ahn J, Zhong X, Hondal RJ, Kraynov VS, Tsai MD. Biochemistry; 1996 Jun 04; 35(22):7041-50. PubMed ID: 8679529 [Abstract] [Full Text] [Related]
18. Refined model for primer/template binding by HIV-1 reverse transcriptase: pre-steady-state kinetic analyses of primer/template binding and nucleotide incorporation events distinguish between different binding modes depending on the nature of the nucleic acid substrate. Wöhrl BM, Krebs R, Goody RS, Restle T. J Mol Biol; 1999 Sep 17; 292(2):333-44. PubMed ID: 10493879 [Abstract] [Full Text] [Related]
19. Mechanistic insights into replication across from bulky DNA adducts: a mutant polymerase I allows an N-acetyl-2-aminofluorene adduct to be accommodated during DNA synthesis. Lone S, Romano LJ. Biochemistry; 2003 Apr 08; 42(13):3826-34. PubMed ID: 12667073 [Abstract] [Full Text] [Related]
20. Stopped-flow fluorescence study of precatalytic primer strand base-unstacking transitions in the exonuclease cleft of bacteriophage T4 DNA polymerase. Otto MR, Bloom LB, Goodman MF, Beechem JM. Biochemistry; 1998 Jul 14; 37(28):10156-63. PubMed ID: 9665721 [Abstract] [Full Text] [Related] Page: [Next] [New Search]