These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


265 related items for PubMed ID: 12940907

  • 1. Regurgitant flow field characteristics of the St. Jude bileaflet mechanical heart valve under physiologic pulsatile flow using particle image velocimetry.
    Manning KB, Kini V, Fontaine AA, Deutsch S, Tarbell JM.
    Artif Organs; 2003 Sep; 27(9):840-6. PubMed ID: 12940907
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. An in vitro investigation of the retrograde flow fields of two bileaflet mechanical heart valves.
    Ellis JT, Healy TM, Fontaine AA, Weston MW, Jarret CA, Saxena R, Yoganathan AP.
    J Heart Valve Dis; 1996 Nov; 5(6):600-6. PubMed ID: 8953437
    [Abstract] [Full Text] [Related]

  • 5. Laser Doppler velocimetry and flow visualization studies in the regurgitant leakage flow region of three mechanical mitral valves.
    Meyer RS, Deutsch S, Bachmann CB, Tarbell JM.
    Artif Organs; 2001 Apr; 25(4):292-9. PubMed ID: 11318758
    [Abstract] [Full Text] [Related]

  • 6. Microflow fields in the hinge region of the CarboMedics bileaflet mechanical heart valve design.
    Leo HL, He Z, Ellis JT, Yoganathan AP.
    J Thorac Cardiovasc Surg; 2002 Sep; 124(3):561-74. PubMed ID: 12202873
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Time-resolved particle image velocimetry and laser doppler anemometry study of the turbulent flow field of bileaflet mechanical mitral prostheses.
    Akutsu T, Fukuda T.
    J Artif Organs; 2005 Sep; 8(3):171-83. PubMed ID: 16235034
    [Abstract] [Full Text] [Related]

  • 12. Role of vortices in cavitation formation in the flow across a mechanical heart valve.
    Li CP, Lu PC, Liu JS, Lo CW, Hwang NH.
    J Heart Valve Dis; 2008 Jul; 17(4):435-45. PubMed ID: 18751474
    [Abstract] [Full Text] [Related]

  • 13. Near field flow characteristics of the Bjork-Shiley Monostrut valve in a modified single shot valve chamber.
    Manning KB, Przybysz TM, Fontaine AA, Tarbell JM, Deutsch S.
    ASAIO J; 2005 Jul; 51(2):133-8. PubMed ID: 15839436
    [Abstract] [Full Text] [Related]

  • 14. Variability of regurgitation in Björk-Shiley mitral valves and relationship to disc occluder design: an in vitro two-dimensional color-Doppler flow mapping study.
    Lindower PD, Dellsperger KC, Johnson B, Chandran KB, Vandenberg BF.
    J Heart Valve Dis; 1996 Aug; 5 Suppl 2():S178-83. PubMed ID: 8905518
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Mean velocity and Reynolds stress measurements in the regurgitant jets of tilting disk heart valves in an artificial heart environment.
    Maymir JC, Deutsch S, Meyer RS, Geselowitz DB, Tarbell JM.
    Ann Biomed Eng; 1998 Aug; 26(1):146-56. PubMed ID: 10355559
    [Abstract] [Full Text] [Related]

  • 20. Flow visualization in mechanical heart valves: occluder rebound and cavitation potential.
    Kini V, Bachmann C, Fontaine A, Deutsch S, Tarbell JM.
    Ann Biomed Eng; 2000 Apr; 28(4):431-41. PubMed ID: 10870900
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.