These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Changes in the Compressive Nonlinearity of the Cochlea During Early Aging: Estimates From Distortion OAE Input/Output Functions. Ortmann AJ, Abdala C. Ear Hear; 2016 Dec; 37(5):603-14. PubMed ID: 27232070 [Abstract] [Full Text] [Related]
7. Dependence of distortion-product otoacoustic emissions on primary levels in normal and impaired ears. I. Effects of decreasing L2 below L1. Whitehead ML, McCoy MJ, Lonsbury-Martin BL, Martin GK. J Acoust Soc Am; 1995 Apr; 97(4):2346-58. PubMed ID: 7714254 [Abstract] [Full Text] [Related]
8. Cochlear Mechanisms and Otoacoustic Emission Test Performance. Go NA, Stamper GC, Johnson TA. Ear Hear; 2019 Apr; 40(2):401-417. PubMed ID: 29952805 [Abstract] [Full Text] [Related]
10. Use of stimulus-frequency otoacoustic emission latency and level to investigate cochlear mechanics in human ears. Schairer KS, Ellison JC, Fitzpatrick D, Keefe DH. J Acoust Soc Am; 2006 Aug; 120(2):901-14. PubMed ID: 16938978 [Abstract] [Full Text] [Related]
11. Influence of primary-level and primary-frequency ratios on human distortion product otoacoustic emissions. Johnson TA, Neely ST, Garner CA, Gorga MP. J Acoust Soc Am; 2006 Jan; 119(1):418-28. PubMed ID: 16454296 [Abstract] [Full Text] [Related]
12. Reflection- and Distortion-Source Otoacoustic Emissions: Evidence for Increased Irregularity in the Human Cochlea During Aging. Abdala C, Ortmann AJ, Shera CA. J Assoc Res Otolaryngol; 2018 Oct; 19(5):493-510. PubMed ID: 29968098 [Abstract] [Full Text] [Related]
13. Cochlear generation of intermodulation distortion revealed by DPOAE frequency functions in normal and impaired ears. Stover LJ, Neely ST, Gorga MP. J Acoust Soc Am; 1999 Nov; 106(5):2669-78. PubMed ID: 10573884 [Abstract] [Full Text] [Related]
14. Sources of DPOAEs revealed by suppression experiments, inverse fast Fourier transforms, and SFOAEs in impaired ears. Konrad-Martin D, Neely ST, Keefe DH, Dorn PA, Cyr E, Gorga MP. J Acoust Soc Am; 2002 Apr; 111(4):1800-9. PubMed ID: 12002864 [Abstract] [Full Text] [Related]
16. The influence of common stimulus parameters on distortion product otoacoustic emission fine structure. Johnson TA, Baranowski LG. Ear Hear; 2012 Jul; 33(2):239-49. PubMed ID: 21918451 [Abstract] [Full Text] [Related]
17. Profiles of Stimulus-Frequency Otoacoustic Emissions from 0.5 to 20 kHz in Humans. Dewey JB, Dhar S. J Assoc Res Otolaryngol; 2017 Feb; 18(1):89-110. PubMed ID: 27681700 [Abstract] [Full Text] [Related]
18. Pure-tone threshold estimation from extrapolated distortion product otoacoustic emission I/O-functions in normal and cochlear hearing loss ears. Boege P, Janssen T. J Acoust Soc Am; 2002 Apr; 111(4):1810-8. PubMed ID: 12002865 [Abstract] [Full Text] [Related]
19. Exploring the Influence of Extended High-Frequency Hearing on Cochlear Functioning at Lower Frequencies. Mishra SK, Rodrigo H, Balan JR. J Speech Lang Hear Res; 2024 Jul 09; 67(7):2473-2482. PubMed ID: 38820241 [Abstract] [Full Text] [Related]
20. Transient-evoked stimulus-frequency and distortion-product otoacoustic emissions in normal and impaired ears. Konrad-Martin D, Keefe DH. J Acoust Soc Am; 2005 Jun 09; 117(6):3799-815. PubMed ID: 16018483 [Abstract] [Full Text] [Related] Page: [Next] [New Search]