These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


182 related items for PubMed ID: 12943766

  • 21. Dynamics of Phloridzin and Related Compounds in Four Cultivars of Apple Trees during the Vegetation Period.
    Táborský J, Sus J, Lachman J, Šebková B, Adamcová A, Šatínský D.
    Molecules; 2021 Jun 22; 26(13):. PubMed ID: 34206687
    [Abstract] [Full Text] [Related]

  • 22. Effects of an Apple Scab-Resistant Cultivar on Use Patterns of Inorganic and Organic Fungicides and Economics of Disease Control.
    Ellis MA, Ferree DC, Funt RC, Madden LV.
    Plant Dis; 1998 Apr 22; 82(4):428-433. PubMed ID: 30856893
    [Abstract] [Full Text] [Related]

  • 23. The Vh8 locus of a new gene-for-gene interaction between Venturia inaequalis and the wild apple Malus sieversii is closely linked to the Vh2 locus in Malus pumila R12740-7A.
    Bus VG, Laurens FN, van de Weg WE, Rusholme RL, Rikkerink EH, Gardiner SE, Bassett HC, Kodde LP, Plummer KM.
    New Phytol; 2005 Jun 22; 166(3):1035-49. PubMed ID: 15869661
    [Abstract] [Full Text] [Related]

  • 24. The Rvi15 (Vr2) apple scab resistance locus contains three TIR-NBS-LRR genes.
    Galli P, Patocchi A, Broggini GA, Gessler C.
    Mol Plant Microbe Interact; 2010 May 22; 23(5):608-17. PubMed ID: 20367469
    [Abstract] [Full Text] [Related]

  • 25. MdUGT88F1-Mediated Phloridzin Biosynthesis Regulates Apple Development and Valsa Canker Resistance.
    Zhou K, Hu L, Li Y, Chen X, Zhang Z, Liu B, Li P, Gong X, Ma F.
    Plant Physiol; 2019 Aug 22; 180(4):2290-2305. PubMed ID: 31227620
    [Abstract] [Full Text] [Related]

  • 26. Revision of the nomenclature of the differential host-pathogen interactions of Venturia inaequalis and Malus.
    Bus VG, Rikkerink EH, Caffier V, Durel CE, Plummer KM.
    Annu Rev Phytopathol; 2011 Aug 22; 49():391-413. PubMed ID: 21599495
    [Abstract] [Full Text] [Related]

  • 27. Elucidating genetic variability and population structure in Venturia inaequalis associated with apple scab diseaseusing SSR markers.
    Mansoor S, Ahmed N, Sharma V, Jan S, Nabi SU, Mir JI, Mir MA, Masoodi KZ.
    PLoS One; 2019 Aug 22; 14(11):e0224300. PubMed ID: 31693681
    [Abstract] [Full Text] [Related]

  • 28. Comparative analysis of the predicted secretomes of Rosaceae scab pathogens Venturia inaequalis and V. pirina reveals expanded effector families and putative determinants of host range.
    Deng CH, Plummer KM, Jones DAB, Mesarich CH, Shiller J, Taranto AP, Robinson AJ, Kastner P, Hall NE, Templeton MD, Bowen JK.
    BMC Genomics; 2017 May 02; 18(1):339. PubMed ID: 28464870
    [Abstract] [Full Text] [Related]

  • 29. De novo transcriptome sequencing and analysis for Venturia inaequalis, the devastating apple scab pathogen.
    Thakur K, Chawla V, Bhatti S, Swarnkar MK, Kaur J, Shankar R, Jha G.
    PLoS One; 2013 May 02; 8(1):e53937. PubMed ID: 23349770
    [Abstract] [Full Text] [Related]

  • 30. Population structure of Venturia inaequalis, a causal agent of apple scab, in response to heterogeneous apple tree cultivation.
    Michalecka M, Masny S, Leroy T, Puławska J.
    BMC Evol Biol; 2018 Jan 19; 18(1):5. PubMed ID: 29351730
    [Abstract] [Full Text] [Related]

  • 31. The Venturia apple pathosystem: pathogenicity mechanisms and plant defense responses.
    Jha G, Thakur K, Thakur P.
    J Biomed Biotechnol; 2009 Jan 19; 2009():680160. PubMed ID: 20150969
    [Abstract] [Full Text] [Related]

  • 32. Construction of a contig of BAC clones spanning the region of the apple scab avirulence gene AvrVg.
    Broggini GA, Le Cam B, Parisi L, Wu C, Zhang HB, Gessler C, Patocchi A.
    Fungal Genet Biol; 2007 Jan 19; 44(1):44-51. PubMed ID: 16904351
    [Abstract] [Full Text] [Related]

  • 33. Molecular characterization of cisgenic lines of apple 'Gala' carrying the Rvi6 scab resistance gene.
    Vanblaere T, Flachowsky H, Gessler C, Broggini GA.
    Plant Biotechnol J; 2014 Jan 19; 12(1):2-9. PubMed ID: 23998808
    [Abstract] [Full Text] [Related]

  • 34. Terpene-mediated parasitoid host location behavior on transgenic and classically bred apple genotypes.
    Vogler U, Rott AS, Gessler C, Dorn S.
    J Agric Food Chem; 2009 Aug 12; 57(15):6630-5. PubMed ID: 19722568
    [Abstract] [Full Text] [Related]

  • 35. Molecular markers linked to the apple scab resistance gene Vbj derived from Malus baccata jackii.
    Gygax M, Gianfranceschi L, Liebhard R, Kellerhals M, Gessler C, Patocchi A.
    Theor Appl Genet; 2004 Nov 12; 109(8):1702-9. PubMed ID: 15365630
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Molecular cloning and functional analysis of a biphenyl phytoalexin-specific O-methyltransferase from apple cell suspension cultures.
    Sarkate A, Saini SS, Gaid M, Teotia D, Mir JI, Agrawal PK, Beerhues L, Sircar D.
    Planta; 2019 Mar 12; 249(3):677-691. PubMed ID: 30357505
    [Abstract] [Full Text] [Related]

  • 38. Same ammo, different weapons: enzymatic extracts from two apple genotypes with contrasted susceptibilities to fire blight (Erwinia amylovora) differentially convert phloridzin and phloretin in vitro.
    Gaucher M, Dugé de Bernonville T, Guyot S, Dat JF, Brisset MN.
    Plant Physiol Biochem; 2013 Nov 12; 72():178-89. PubMed ID: 23561298
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Slow erosion of a quantitative apple resistance to Venturia inaequalis based on an isolate-specific Quantitative Trait Locus.
    Caffier V, Le Cam B, Al Rifaï M, Bellanger MN, Comby M, Denancé C, Didelot F, Expert P, Kerdraon T, Lemarquand A, Ravon E, Durel CE.
    Infect Genet Evol; 2016 Oct 12; 44():541-548. PubMed ID: 27431333
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.