These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
119 related items for PubMed ID: 12947182
1. Comment on "The pentacovalent phosphorus intermediate of a phosphoryl transfer reaction". Blackburn GM, Williams NH, Gamblin SJ, Smerdon SJ. Science; 2003 Aug 29; 301(5637):1184; author reply 1184. PubMed ID: 12947182 [No Abstract] [Full Text] [Related]
2. The pentacovalent phosphorus intermediate of a phosphoryl transfer reaction. Lahiri SD, Zhang G, Dunaway-Mariano D, Allen KN. Science; 2003 Mar 28; 299(5615):2067-71. PubMed ID: 12637673 [Abstract] [Full Text] [Related]
3. Chemistry. Seeing is believing. Knowles J. Science; 2003 Mar 28; 299(5615):2002-3. PubMed ID: 12637674 [No Abstract] [Full Text] [Related]
4. Atomic details of near-transition state conformers for enzyme phosphoryl transfer revealed by MgF-3 rather than by phosphoranes. Baxter NJ, Bowler MW, Alizadeh T, Cliff MJ, Hounslow AM, Wu B, Berkowitz DB, Williams NH, Blackburn GM, Waltho JP. Proc Natl Acad Sci U S A; 2010 Mar 09; 107(10):4555-60. PubMed ID: 20164409 [Abstract] [Full Text] [Related]
5. α-Fluorophosphonates reveal how a phosphomutase conserves transition state conformation over hexose recognition in its two-step reaction. Jin Y, Bhattasali D, Pellegrini E, Forget SM, Baxter NJ, Cliff MJ, Bowler MW, Jakeman DL, Blackburn GM, Waltho JP. Proc Natl Acad Sci U S A; 2014 Aug 26; 111(34):12384-9. PubMed ID: 25104750 [Abstract] [Full Text] [Related]
6. Pentacoordinated phosphorus revisited by high-level QM/MM calculations. Marcos E, Field MJ, Crehuet R. Proteins; 2010 Aug 15; 78(11):2405-11. PubMed ID: 20602355 [Abstract] [Full Text] [Related]
7. Catalytic cycling in beta-phosphoglucomutase: a kinetic and structural analysis. Zhang G, Dai J, Wang L, Dunaway-Mariano D, Tremblay LW, Allen KN. Biochemistry; 2005 Jul 12; 44(27):9404-16. PubMed ID: 15996095 [Abstract] [Full Text] [Related]
8. MgF(3)(-) and alpha-galactose 1-phosphate in the active site of beta-phosphoglucomutase form a transition state analogue of phosphoryl transfer. Baxter NJ, Hounslow AM, Bowler MW, Williams NH, Blackburn GM, Waltho JP. J Am Chem Soc; 2009 Nov 18; 131(45):16334-5. PubMed ID: 19852484 [Abstract] [Full Text] [Related]
9. High-energy intermediate or stable transition state analogue: theoretical perspective of the active site and mechanism of beta-phosphoglucomutase. Webster CE. J Am Chem Soc; 2004 Jun 09; 126(22):6840-1. PubMed ID: 15174833 [Abstract] [Full Text] [Related]
10. Chemical confirmation of a pentavalent phosphorane in complex with beta-phosphoglucomutase. Tremblay LW, Zhang G, Dai J, Dunaway-Mariano D, Allen KN. J Am Chem Soc; 2005 Apr 20; 127(15):5298-9. PubMed ID: 15826149 [Abstract] [Full Text] [Related]
11. Structural changes at the metal ion binding site during the phosphoglucomutase reaction. Ray WJ, Post CB, Liu Y, Rhyu GI. Biochemistry; 1993 Jan 12; 32(1):48-57. PubMed ID: 8418859 [Abstract] [Full Text] [Related]
12. Structure and binding of Mg(II) ions and di-metal bridge complexes with biological phosphates and phosphoranes. Mayaan E, Range K, York DM. J Biol Inorg Chem; 2004 Oct 12; 9(7):807-17. PubMed ID: 15328556 [Abstract] [Full Text] [Related]
13. A Trojan horse transition state analogue generated by MgF3- formation in an enzyme active site. Baxter NJ, Olguin LF, Golicnik M, Feng G, Hounslow AM, Bermel W, Blackburn GM, Hollfelder F, Waltho JP, Williams NH. Proc Natl Acad Sci U S A; 2006 Oct 03; 103(40):14732-7. PubMed ID: 16990434 [Abstract] [Full Text] [Related]
14. The reaction of phosphohexomutase from Pseudomonas aeruginosa: structural insights into a simple processive enzyme. Regni C, Schramm AM, Beamer LJ. J Biol Chem; 2006 Jun 02; 281(22):15564-71. PubMed ID: 16595672 [Abstract] [Full Text] [Related]
15. Crystal structure analysis of the exocytosis-sensitive phosphoprotein, pp63/parafusin (phosphoglucomutase), from Paramecium reveals significant conformational variability. Müller S, Diederichs K, Breed J, Kissmehl R, Hauser K, Plattner H, Welte W. J Mol Biol; 2002 Jan 11; 315(2):141-53. PubMed ID: 11779235 [Abstract] [Full Text] [Related]
16. P removal from anaerobic supernatants by struvite crystallization: long term validation and process modelling. Battistoni P, De Angelis A, Prisciandaro M, Boccadoro R, Bolzonella D. Water Res; 2002 Apr 11; 36(8):1927-38. PubMed ID: 12092567 [Abstract] [Full Text] [Related]
17. Modeling the crystallization of magnesium ammonium phosphate for phosphorus recovery. Wang J, Song Y, Yuan P, Peng J, Fan M. Chemosphere; 2006 Nov 11; 65(7):1182-7. PubMed ID: 16684557 [Abstract] [Full Text] [Related]
18. Phosphorus recovery by struvite crystallization in WWTPs: influence of the sludge treatment line operation. Martí N, Pastor L, Bouzas A, Ferrer J, Seco A. Water Res; 2010 Apr 11; 44(7):2371-9. PubMed ID: 20089291 [Abstract] [Full Text] [Related]
19. Phosphoryl transfer enzymes and hypervalent phosphorus chemistry. Holmes RR. Acc Chem Res; 2004 Oct 11; 37(10):746-53. PubMed ID: 15491121 [Abstract] [Full Text] [Related]
20. Biologically relevant phosphoranes: synthesis and structural characterization of glucofuranose-derived phosphoranes with penta- and hexacoordination at phosphorus. Timosheva NV, Chandrasekaran A, Holmes RR. Inorg Chem; 2006 Dec 25; 45(26):10836-48. PubMed ID: 17173443 [Abstract] [Full Text] [Related] Page: [Next] [New Search]