These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. An atlas of notochord and somite morphogenesis in several anuran and urodelean amphibians. Youn BW, Keller RE, Malacinski GM. J Embryol Exp Morphol; 1980 Oct; 59():223-47. PubMed ID: 6971322 [Abstract] [Full Text] [Related]
3. [Self-organization in the determination of the size of the axial structures in the embryogenesis of the clawed toad]. Zaraĭskiĭ AG. Ontogenez; 1991 Oct; 22(4):365-74. PubMed ID: 1945268 [Abstract] [Full Text] [Related]
4. Cell intercalation during notochord development in Xenopus laevis. Keller R, Cooper MS, Danilchik M, Tibbetts P, Wilson PA. J Exp Zool; 1989 Aug; 251(2):134-54. PubMed ID: 2769201 [Abstract] [Full Text] [Related]
5. Patterning and tissue movements in a novel explant preparation of the marginal zone of Xenopus laevis. Davidson LA, Keller R, DeSimone D. Gene Expr Patterns; 2004 Jul; 4(4):457-66. PubMed ID: 15183313 [Abstract] [Full Text] [Related]
6. Superficial cells in the early gastrula of Rana pipiens contribute to mesodermal derivatives. Delarue M, Johnson KE, Boucaut JC. Dev Biol; 1994 Oct; 165(2):702-15. PubMed ID: 7958431 [Abstract] [Full Text] [Related]
7. Pattern and morphogenesis of presumptive superficial mesoderm in two closely related species, Xenopus laevis and Xenopus tropicalis. Shook DR, Majer C, Keller R. Dev Biol; 2004 Jun 01; 270(1):163-85. PubMed ID: 15136148 [Abstract] [Full Text] [Related]
8. Cell number in relation to primary pattern formation in the embryo of Xenopus laevis. II. Sequential cell recruitment, and control of the cell cycle, during mesoderm formation. Cooke J. J Embryol Exp Morphol; 1979 Oct 01; 53():269-89. PubMed ID: 536690 [Abstract] [Full Text] [Related]
9. Dorsalization and neural induction: properties of the organizer in Xenopus laevis. Smith JC, Slack JM. J Embryol Exp Morphol; 1983 Dec 01; 78():299-317. PubMed ID: 6663230 [Abstract] [Full Text] [Related]
10. Gastrulation of Gastrotheca riobambae in comparison with other frogs. Moya IM, Alarcón I, del Pino EM. Dev Biol; 2007 Apr 15; 304(2):467-78. PubMed ID: 17306246 [Abstract] [Full Text] [Related]
11. [Role of cooperative cell movements and mechano-geometric constrains in patterning of axial rudiments in Xenopus laevis embryos]. Belousov LV, Korvin-Pavlovskaia EG, Luchinskaia NN, Kornikova ES. Ontogenez; 2007 Apr 15; 38(3):192-204. PubMed ID: 17621975 [Abstract] [Full Text] [Related]
12. [Distribution of differentiation potentials and the conditions for their realization in the amphibian neuroectoderm]. Golubeva ON. Ontogenez; 1986 Apr 15; 17(6):648-54. PubMed ID: 3822378 [Abstract] [Full Text] [Related]
13. On the role of the notochord in somite formation and the possible evolutionary significance of the concomitant cell re-orientation. Burgess AM. J Anat; 1983 Jun 15; 136(Pt 4):829-35. PubMed ID: 6885630 [Abstract] [Full Text] [Related]
14. An inhibitory effect of Xenopus gastrula ectoderm on muscle cell differentiation and its role for dorsoventral patterning of mesoderm. Kato K, Gurdon JB. Dev Biol; 1994 May 15; 163(1):222-9. PubMed ID: 8174778 [Abstract] [Full Text] [Related]
15. Tissue interactions in the induction of anterior pituitary: role of the ventral diencephalon, mesenchyme, and notochord. Gleiberman AS, Fedtsova NG, Rosenfeld MG. Dev Biol; 1999 Sep 15; 213(2):340-53. PubMed ID: 10479452 [Abstract] [Full Text] [Related]
16. Comparative analysis of amphibian somite morphogenesis: cell rearrangement patterns during rosette formation and myoblast fusion. Youn BW, Malacinski GM. J Embryol Exp Morphol; 1981 Dec 15; 66():1-26. PubMed ID: 7338706 [Abstract] [Full Text] [Related]
17. Patterns of cell behaviour underlying somitogenesis and notochord formation in intact vertebrate embryos. Wood A, Thorogood P. Dev Dyn; 1994 Oct 15; 201(2):151-67. PubMed ID: 7873787 [Abstract] [Full Text] [Related]
18. Cells remain competent to respond to mesoderm-inducing signals present during gastrulation in Xenopus laevis. Domingo C, Keller R. Dev Biol; 2000 Sep 01; 225(1):226-40. PubMed ID: 10964477 [Abstract] [Full Text] [Related]
19. Impact of node ablation on the morphogenesis of the body axis and the lateral asymmetry of the mouse embryo during early organogenesis. Davidson BP, Kinder SJ, Steiner K, Schoenwolf GC, Tam PP. Dev Biol; 1999 Jul 01; 211(1):11-26. PubMed ID: 10373301 [Abstract] [Full Text] [Related]
20. Evidence that sclerotomal cells do not migrate medially during normal embryonic development of the rat. Gasser RF. Am J Anat; 1979 Apr 01; 154(4):509-24. PubMed ID: 433794 [Abstract] [Full Text] [Related] Page: [Next] [New Search]