These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
137 related items for PubMed ID: 12963736
21. Lipoyl dehydrogenase catalyzes reduction of nitrated DNA and protein adducts using dihydrolipoic acid or ubiquinol as the cofactor. Chen HJ, Chen YM, Chang CM. Chem Biol Interact; 2002 Aug 15; 140(3):199-213. PubMed ID: 12204577 [Abstract] [Full Text] [Related]
22. Catalysis of nitrofuran redox-cycling and superoxide anion production by heart lipoamide dehydrogenase. Sreider CM, Grinblat L, Stoppani AO. Biochem Pharmacol; 1990 Oct 15; 40(8):1849-57. PubMed ID: 2173592 [Abstract] [Full Text] [Related]
23. One-electron-transfer reactions in biochemical systems. V. Difference in the mechanism of quinone reduction by the NADH dehydrogenase and the NAD(P)H dehydrogenase (DT-diaphorase). Iyanagi T, Yamazaki I. Biochim Biophys Acta; 1970 Sep 01; 216(2):282-94. PubMed ID: 4396182 [No Abstract] [Full Text] [Related]
24. Thioredoxin elicits a new dihydrolipoamide dehydrogenase activity by interaction with the electron-transferring flavoprotein in Clostridium litoralis and Eubacterium acidaminophilum. Meyer M, Dietrichs D, Schmidt B, Andreesen JR. J Bacteriol; 1991 Feb 01; 173(4):1509-13. PubMed ID: 1995593 [Abstract] [Full Text] [Related]
25. Iron-EDTA stimulated reduction of indicine N-oxide by the hepatic microsomal fraction, isolated hepatocytes, and the intact rat. Powis G, Svingen BA, Degraw C. Biochem Pharmacol; 1982 Feb 01; 31(3):293-9. PubMed ID: 6280724 [Abstract] [Full Text] [Related]
26. Catalysis of diaphorase reactions by Mycobacterium tuberculosis lipoamide dehydrogenase occurs at the EH4 level. Argyrou A, Sun G, Palfey BA, Blanchard JS. Biochemistry; 2003 Feb 25; 42(7):2218-28. PubMed ID: 12590611 [Abstract] [Full Text] [Related]
28. Dynamics of xanthine oxidase- and Fe(3+)-ADP-dependent lipid peroxidation in negatively charged phospholipid vesicles. Fukuzawa K, Soumi K, Iemura M, Goto S, Tokumura A. Arch Biochem Biophys; 1995 Jan 10; 316(1):83-91. PubMed ID: 7840682 [Abstract] [Full Text] [Related]
29. Complexes of iron and cobalt tetrasulfonated phthalocyanines with apocytochrome c. Przywarska-Boniecka H, Ostropolska L. J Inorg Biochem; 1982 Jun 10; 16(3):183-99. PubMed ID: 6286874 [Abstract] [Full Text] [Related]
30. Characterization of a new member of the flavoprotein disulfide reductase family of enzymes from Mycobacterium tuberculosis. Argyrou A, Vetting MW, Blanchard JS. J Biol Chem; 2004 Dec 10; 279(50):52694-702. PubMed ID: 15456792 [Abstract] [Full Text] [Related]
31. End-on and side-on peroxo derivatives of non-heme iron complexes with pentadentate ligands: models for putative intermediates in biological iron/dioxygen chemistry. Roelfes G, Vrajmasu V, Chen K, Ho RY, Rohde JU, Zondervan C, La Crois RM, Schudde EP, Lutz M, Spek AL, Hage R, Feringa BL, Münck E, Que L. Inorg Chem; 2003 Apr 21; 42(8):2639-53. PubMed ID: 12691572 [Abstract] [Full Text] [Related]
32. Characterization of dissimilatory Fe(III) versus NO3- reduction in the hyperthermophilic archaeon Pyrobaculum aerophilum. Feinberg LF, Holden JF. J Bacteriol; 2006 Jan 21; 188(2):525-31. PubMed ID: 16385043 [Abstract] [Full Text] [Related]
33. NADH:Fe(III)-chelate reductase of maize roots is an active cytochrome b5 reductase. Sparla F, Bagnaresi P, Scagliarini S, Trost P. FEBS Lett; 1997 Sep 15; 414(3):571-5. PubMed ID: 9323038 [Abstract] [Full Text] [Related]
34. Fe(III).ATP complexes. Models for ferritin and other polynuclear iron complexes with phosphate. Mansour AN, Thompson C, Theil EC, Chasteen ND, Sayers DE. J Biol Chem; 1985 Jul 05; 260(13):7975-9. PubMed ID: 2989269 [Abstract] [Full Text] [Related]
35. Spectral analysis of Fe(III)-complex reduction by hemoglobin: possible mechanisms of interaction. Harrington JP, Hicks RL. Int J Biochem; 1994 Sep 05; 26(9):1111-7. PubMed ID: 7988735 [Abstract] [Full Text] [Related]
36. Labile Iron Pool of Isolated Escherichia coli Cytosol Likely Includes Fe-ATP and Fe-Citrate but not Fe-Glutathione or Aqueous Fe. Brawley HN, Kreinbrink AC, Hierholzer JD, Vali SW, Lindahl PA. J Am Chem Soc; 2023 Feb 01; 145(4):2104-2117. PubMed ID: 36661842 [Abstract] [Full Text] [Related]
37. The mechanism of the quinone reductase reaction of pig heart lipoamide dehydrogenase. Vienozinskis J, Butkus A, Cenas N, Kulys J. Biochem J; 1990 Jul 01; 269(1):101-5. PubMed ID: 2375745 [Abstract] [Full Text] [Related]
38. One- and two-electron reduction of 2-methyl-1,4-naphthoquinone bioreductive alkylating agents: kinetic studies, free-radical production, thiol oxidation and DNA-strand-break formation. Giulivi C, Cadenas E. Biochem J; 1994 Jul 01; 301 ( Pt 1)(Pt 1):21-30. PubMed ID: 8037673 [Abstract] [Full Text] [Related]
39. Escherichia coli ferredoxin-NADP+ reductase and oxygen-insensitive nitroreductase are capable of functioning as ferric reductase and of driving the Fenton reaction. Takeda K, Sato J, Goto K, Fujita T, Watanabe T, Abo M, Yoshimura E, Nakagawa J, Abe A, Kawasaki S, Niimura Y. Biometals; 2010 Aug 01; 23(4):727-37. PubMed ID: 20407804 [Abstract] [Full Text] [Related]
40. Enzymatic characterization of dihydrolipoamide dehydrogenase from Streptococcus pneumoniae harboring its own substrate. Håkansson AP, Smith AW. J Biol Chem; 2007 Oct 05; 282(40):29521-30. PubMed ID: 17690105 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]