These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
239 related items for PubMed ID: 12966480
1. Bone augmentation osteogenesis using hydroxyapatite and beta-tricalcium phosphate blocks. Fujita R, Yokoyama A, Kawasaki T, Kohgo T. J Oral Maxillofac Surg; 2003 Sep; 61(9):1045-53. PubMed ID: 12966480 [Abstract] [Full Text] [Related]
2. Ultrastructure of ceramic-bone interface using hydroxyapatite and beta-tricalcium phosphate ceramics and replacement mechanism of beta-tricalcium phosphate in bone. Fujita R, Yokoyama A, Nodasaka Y, Kohgo T, Kawasaki T. Tissue Cell; 2003 Dec; 35(6):427-40. PubMed ID: 14580356 [Abstract] [Full Text] [Related]
3. Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect. Rojbani H, Nyan M, Ohya K, Kasugai S. J Biomed Mater Res A; 2011 Sep 15; 98(4):488-98. PubMed ID: 21681941 [Abstract] [Full Text] [Related]
4. Implanted octacalcium phosphate is more resorbable than beta-tricalcium phosphate and hydroxyapatite. Kamakura S, Sasano Y, Shimizu T, Hatori K, Suzuki O, Kagayama M, Motegi K. J Biomed Mater Res; 2002 Jan 15; 59(1):29-34. PubMed ID: 11745534 [Abstract] [Full Text] [Related]
5. Electrostatic surface charge acceleration of bone ingrowth of porous hydroxyapatite/beta-tricalcium phosphate ceramics. Nakamura S, Kobayashi T, Nakamura M, Itoh S, Yamashita K. J Biomed Mater Res A; 2010 Jan 15; 92(1):267-75. PubMed ID: 19180523 [Abstract] [Full Text] [Related]
9. Histological and histomorphometrical comparative study of β-tricalcium phosphate block grafts and periosteal expansion osteogenesis for alveolar bone augmentation. Yamauchi K, Takahashi T, Funaki K, Hamada Y, Yamashita Y. Int J Oral Maxillofac Surg; 2010 Oct 15; 39(10):1000-6. PubMed ID: 20615666 [Abstract] [Full Text] [Related]
12. Improved bone anchorage of hydroxypatite coated implants compared with tricalcium-phosphate coated implants in trabecular bone in dogs. Lind M, Overgaard S, Bünger C, Søballe K. Biomaterials; 1999 May 15; 20(9):803-8. PubMed ID: 10226706 [Abstract] [Full Text] [Related]
13. Comparison of in vivo bioactivity and compressive strength of a novel superporous hydroxyapatite with beta-tricalcium phosphates. Okanoue Y, Ikeuchi M, Takemasa R, Tani T, Matsumoto T, Sakamoto M, Nakasu M. Arch Orthop Trauma Surg; 2012 Nov 15; 132(11):1603-10. PubMed ID: 22760581 [Abstract] [Full Text] [Related]
14. Biphasic β-TCP mixed with silicon increases bone formation in critical site defects in rabbit calvaria. Calvo-Guirado JL, Garces M, Delgado-Ruiz RA, Ramirez Fernandez MP, Ferres-Amat E, Romanos GE. Clin Oral Implants Res; 2015 Aug 15; 26(8):891-897. PubMed ID: 24863557 [Abstract] [Full Text] [Related]
15. The effect of the microstructure of beta-tricalcium phosphate on the metabolism of subsequently formed bone tissue. Okuda T, Ioku K, Yonezawa I, Minagi H, Kawachi G, Gonda Y, Murayama H, Shibata Y, Minami S, Kamihira S, Kurosawa H, Ikeda T. Biomaterials; 2007 Jun 15; 28(16):2612-21. PubMed ID: 17316789 [Abstract] [Full Text] [Related]
17. Hydroxylapatite and tricalcium phosphate implants in the dental alveolus of rats. A histometric study. Rosa AL, Brentegani LG, Grandini SA. Braz Dent J; 1995 Jun 15; 6(2):103-9. PubMed ID: 8688654 [Abstract] [Full Text] [Related]