These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
89 related items for PubMed ID: 12970471
1. Experimental approach to elucidating the mechanism of light-independent chlorophyll biosynthesis in greening barley. Raskin VI, Schwartz A. Plant Physiol; 2003 Sep; 133(1):25-8. PubMed ID: 12970471 [No Abstract] [Full Text] [Related]
2. Characterization of two phases of chlorophyll formation during greening of etiolated barley leaves. Domanskii V, Rassadina V, Gus-Mayer S, Wanner G, Schoch S, Rüdiger W. Planta; 2003 Jan; 216(3):475-83. PubMed ID: 12520340 [Abstract] [Full Text] [Related]
3. Photodynamic action of uroporphyrin and protochlorophyllide in greening barley leaves treated with cesium chloride. Shalygo NV, Mock HP, Averina NG, Grimm B. J Photochem Photobiol B; 1998 Feb; 42(2):151-8. PubMed ID: 9540221 [Abstract] [Full Text] [Related]
4. Both light-dependent protochlorophyllide oxidoreductase A and protochlorophyllide oxidoreductase B are down-regulated in the slender mutant of barley. Ougham HJ, Thomas AM, Thomas BJ, Frick GA, Armstrong GA. J Exp Bot; 2001 Jul; 52(360):1447-54. PubMed ID: 11457904 [Abstract] [Full Text] [Related]
5. Evidence of chlorophyll synthesis pathway alteration in desiccated barley leaves. Le Lay P, Eullaffroy P, Juneau P, Popovic R. Plant Cell Physiol; 2000 May; 41(5):565-70. PubMed ID: 10929939 [Abstract] [Full Text] [Related]
6. Detection of the photoactive protochlorophyllide-protein complex in the light during the greening of barley. Franck F, Strzalka K. FEBS Lett; 1992 Aug 31; 309(1):73-7. PubMed ID: 1511748 [Abstract] [Full Text] [Related]
7. Rapid dark repression of 5-aminolevulinic acid synthesis in green barley leaves. Richter A, Peter E, Pörs Y, Lorenzen S, Grimm B, Czarnecki O. Plant Cell Physiol; 2010 May 31; 51(5):670-81. PubMed ID: 20375109 [Abstract] [Full Text] [Related]
8. Two routes of chlorophyllide synthesis that are differentially regulated by light in barley (Hordeum vulgare L.). Holtorf H, Reinbothe S, Reinbothe C, Bereza B, Apel K. Proc Natl Acad Sci U S A; 1995 Apr 11; 92(8):3254-8. PubMed ID: 7724548 [Abstract] [Full Text] [Related]
9. The association of protein synthesis with protochlorophyllide holochrome regeneration in dark-grown barley leaves. Alscher RG, Hawkes SP, Sauer K. Biochem Biophys Res Commun; 1976 Nov 22; 73(2):240-7. PubMed ID: 999709 [No Abstract] [Full Text] [Related]
10. Salicylic acid decreases the levels of dehydrin-like proteins in Tibetan hulless barley leaves under water stress. Sun X, Yuan S, Lin HH. Z Naturforsch C J Biosci; 2006 Nov 22; 61(3-4):245-50. PubMed ID: 16729584 [Abstract] [Full Text] [Related]
11. Root-shoot interaction in the greening of wheat seedlings grown under red light. Tripathy BC, Brown CS. Plant Physiol; 1995 Feb 22; 107(2):407-11. PubMed ID: 11536685 [Abstract] [Full Text] [Related]
12. Elucidation of the preferred routes of C8-vinyl reduction in chlorophyll and bacteriochlorophyll biosynthesis. Canniffe DP, Chidgey JW, Hunter CN. Biochem J; 2014 Sep 15; 462(3):433-40. PubMed ID: 24942864 [Abstract] [Full Text] [Related]
13. Evidence for a light-independent protochlorophyllide reductase in green barley leaves. Adamson H. Prog Clin Biol Res; 1982 Sep 15; 102 Pt B():33-41. PubMed ID: 7163175 [Abstract] [Full Text] [Related]
14. Identification of NADPH:protochlorophyllide oxidoreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Armstrong GA, Runge S, Frick G, Sperling U, Apel K. Plant Physiol; 1995 Aug 15; 108(4):1505-17. PubMed ID: 7659751 [Abstract] [Full Text] [Related]
15. Bleaching herbicide effects on plastids of dark-grown plants: lipid composition of etioplasts in amitrole and norflurazon-treated barley leaves. Di Baccio D, Quartacci MF, Vecchia FD, La Rocca N, Rascio N, Navari-Izzo F. J Exp Bot; 2002 Sep 15; 53(376):1857-65. PubMed ID: 12177123 [Abstract] [Full Text] [Related]
16. Enzymatic product formation impairs both the chloroplast receptor-binding function as well as translocation competence of the NADPH: protochlorophyllide oxidoreductase, a nuclear-encoded plastid precursor protein. Reinbothe S, Reinbothe C, Runge S, Apel K. J Cell Biol; 1995 Apr 15; 129(2):299-308. PubMed ID: 7721935 [Abstract] [Full Text] [Related]
17. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Sakuraba Y, Rahman ML, Cho SH, Kim YS, Koh HJ, Yoo SC, Paek NC. Plant J; 2013 Apr 15; 74(1):122-33. PubMed ID: 23289852 [Abstract] [Full Text] [Related]
18. [Light-induced reduction of protochlorophyllide in angiosperms and chloroplast development]. Myśliwa-Kurdziel B, Strzałka K. Postepy Biochem; 2010 Apr 15; 56(4):418-26. PubMed ID: 21473046 [Abstract] [Full Text] [Related]
19. Biosynthesis of chlorophyll from protochlorophyll(ide) in green plant leaves. Ignatov NV, Litvin FF. Biochemistry (Mosc); 2002 Aug 15; 67(8):949-55. PubMed ID: 12223097 [Abstract] [Full Text] [Related]
20. Membrane system organization in the process of greening of clinorotated barley seedlings. Adamchuk-Chala NI, Syvash OO, Povkhan MF, Dovbysh KP. J Gravit Physiol; 2007 Jul 15; 14(1):P113-4. PubMed ID: 18372725 [Abstract] [Full Text] [Related] Page: [Next] [New Search]