These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
158 related items for PubMed ID: 12971912
1. Differential effects of carboxyfullerene on MPP+/MPTP-induced neurotoxicity. Lin AM, Yang CH, Ueng YF, Luh TY, Liu TY, Lay YP, Ho LT. Neurochem Int; 2004 Jan; 44(2):99-105. PubMed ID: 12971912 [Abstract] [Full Text] [Related]
2. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in non-human primates is antagonized by pretreatment with nimodipine at the nigral, but not at the striatal level. Kupsch A, Sautter J, Schwarz J, Riederer P, Gerlach M, Oertel WH. Brain Res; 1996 Nov 25; 741(1-2):185-96. PubMed ID: 9001722 [Abstract] [Full Text] [Related]
3. Increased susceptibility of G-protein coupled receptor 6 deficient mice to MPTP neurotoxicity. Oeckl P, Ferger B. Neuroscience; 2016 Nov 19; 337():218-223. PubMed ID: 27651149 [Abstract] [Full Text] [Related]
4. Carboxyfullerene prevents iron-induced oxidative stress in rat brain. Lin AM, Chyi BY, Wang SD, Yu HH, Kanakamma PP, Luh TY, Chou CK, Ho LT. J Neurochem; 1999 Apr 19; 72(4):1634-40. PubMed ID: 10098871 [Abstract] [Full Text] [Related]
6. Behavioural effects and supersensitivity in the rat following intranigral MPTP and MPP+ administration. Lange KW. Eur J Pharmacol; 1990 Jan 03; 175(1):57-61. PubMed ID: 2323346 [Abstract] [Full Text] [Related]
7. Systemic administration of proteasome inhibitor protects against MPTP neurotoxicity in mice. Oshikawa T, Kuroiwa H, Yano R, Yokoyama H, Kadoguchi N, Kato H, Araki T. Cell Mol Neurobiol; 2009 Jul 03; 29(5):769-77. PubMed ID: 19370411 [Abstract] [Full Text] [Related]
8. CEP-1347/KT-7515, an inhibitor of c-jun N-terminal kinase activation, attenuates the 1-methyl-4-phenyl tetrahydropyridine-mediated loss of nigrostriatal dopaminergic neurons In vivo. Saporito MS, Brown EM, Miller MS, Carswell S. J Pharmacol Exp Ther; 1999 Feb 03; 288(2):421-7. PubMed ID: 9918541 [Abstract] [Full Text] [Related]
9. Reduction of dopaminergic degeneration and oxidative stress by inhibition of angiotensin converting enzyme in a MPTP model of parkinsonism. Muñoz A, Rey P, Guerra MJ, Mendez-Alvarez E, Soto-Otero R, Labandeira-Garcia JL. Neuropharmacology; 2006 Jul 03; 51(1):112-20. PubMed ID: 16678218 [Abstract] [Full Text] [Related]
10. Differential interactive effects of gliotoxin and MPTP in the substantia nigra and the locus coeruleus in BALB/c mice. Chang FW, Wang SD, Lu KT, Lee EH. Brain Res Bull; 1993 Jul 03; 31(3-4):253-66. PubMed ID: 7683960 [Abstract] [Full Text] [Related]
11. EGb761 protects against nigrostriatal dopaminergic neurotoxicity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice: role of oxidative stress. Rojas P, Serrano-García N, Mares-Sámano JJ, Medina-Campos ON, Pedraza-Chaverri J, Ogren SO. Eur J Neurosci; 2008 Jul 03; 28(1):41-50. PubMed ID: 18662333 [Abstract] [Full Text] [Related]
12. Lowering ambient or core body temperature elevates striatal MPP+ levels and enhances toxicity to dopamine neurons in MPTP-treated mice. Moy LY, Albers DS, Sonsalla PK. Brain Res; 1998 Apr 20; 790(1-2):264-9. PubMed ID: 9593931 [Abstract] [Full Text] [Related]
13. The toxic actions of MPTP and its metabolite MPP+ are not mimicked by analogues of MPTP lacking an N-methyl moiety. Bradbury AJ, Costall B, Domeney AM, Testa B, Jenner PG, Marsden CD, Naylor RJ. Neurosci Lett; 1985 Oct 24; 61(1-2):121-6. PubMed ID: 2417166 [Abstract] [Full Text] [Related]
14. Comparative toxicity of MPTP, MPP+ and 3,3-dimethyl-MPDP+ to dopaminergic neurons of the rat substantia nigra. Sayre LM, Arora PK, Iacofano LA, Harik SI. Eur J Pharmacol; 1986 May 13; 124(1-2):171-4. PubMed ID: 3487462 [Abstract] [Full Text] [Related]
15. Riluzole (2-amino-6-trifluoromethoxy benzothiazole) attenuates MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) neurotoxicity in mice. Araki T, Muramatsu Y, Tanaka K, Matsubara M, Imai Y. Neurosci Lett; 2001 Oct 12; 312(1):50-4. PubMed ID: 11578843 [Abstract] [Full Text] [Related]
16. Dopamine-releasing action of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridine (MPP+) in the neostriatum of the rat as demonstrated in vivo by the push-pull perfusion technique: dependence on sodium but not calcium ions. Sirinathsinghji DJ, Heavens RP, McBride CS. Brain Res; 1988 Mar 08; 443(1-2):101-16. PubMed ID: 3258784 [Abstract] [Full Text] [Related]
17. MPTP-induced dopaminergic neurotoxicity in mouse brain is attenuated after subsequent intranasal administration of (R)-ketamine: a role of TrkB signaling. Fujita A, Fujita Y, Pu Y, Chang L, Hashimoto K. Psychopharmacology (Berl); 2020 Jan 08; 237(1):83-92. PubMed ID: 31418048 [Abstract] [Full Text] [Related]
18. Role of nitric oxide synthase against MPTP neurotoxicity in mice. Kurosaki R, Muramatsu Y, Michimata M, Matsubara M, Kato H, Imai Y, Itoyama Y, Araki T. Neurol Res; 2002 Oct 08; 24(7):655-62. PubMed ID: 12392201 [Abstract] [Full Text] [Related]
19. FGF-2-mediated protection of cultured mesencephalic dopaminergic neurons against MPTP and MPP+: specificity and impact of culture conditions, non-dopaminergic neurons, and astroglial cells. Otto D, Unsicker K. J Neurosci Res; 1993 Mar 01; 34(4):382-93. PubMed ID: 8097265 [Abstract] [Full Text] [Related]
20. Neuroprotective effects of (+/-)-kavain in the MPTP mouse model of Parkinson's disease. Schmidt N, Ferger B. Synapse; 2001 Apr 01; 40(1):47-54. PubMed ID: 11170221 [Abstract] [Full Text] [Related] Page: [Next] [New Search]