These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Interactions of dietary fat and 2,5-anhydro-D-mannitol on energy metabolism in isolated rat hepatocytes. Ji H, Graczyk-Milbrandt G, Osbakken MD, Friedman MI. Am J Physiol Regul Integr Comp Physiol; 2002 Mar 23; 282(3):R715-20. PubMed ID: 11832391 [Abstract] [Full Text] [Related]
4. Hyperpolarization of the rat hepatocyte membrane by 2,5-anhydro-D-mannitol in vivo. Lutz TA, Boutellier S, Scharrer E. Life Sci; 1998 Mar 23; 62(16):1427-32. PubMed ID: 9585170 [Abstract] [Full Text] [Related]
5. Hepatic phosphate trapping, decreased ATP, and increased feeding after 2,5-anhydro-D-mannitol. Rawson NE, Blum H, Osbakken MD, Friedman MI. Am J Physiol; 1994 Jan 23; 266(1 Pt 2):R112-7. PubMed ID: 8304531 [Abstract] [Full Text] [Related]
6. High-fat diet prevents eating response and attenuates liver ATP decline in rats given 2,5-anhydro-D-mannitol. Friedman MI, Koch JE, Graczyk-Milbrandt G, Ulrich PM, Osbakken MD. Am J Physiol Regul Integr Comp Physiol; 2002 Mar 23; 282(3):R710-4. PubMed ID: 11832390 [Abstract] [Full Text] [Related]
7. Effect of 2,5-anhydro-D-mannitol on membrane potential in rat hepatocyte couplets and hepatocyte monolayer cultures. Cermak R, Scharrer E. Biochim Biophys Acta; 1999 Sep 21; 1421(1):116-24. PubMed ID: 10561476 [Abstract] [Full Text] [Related]
8. Phosphate loading prevents the decrease in ATP and increase in food intake produced by 2,5-anhydro-D-mannitol. Rawson NE, Friedman MI. Am J Physiol; 1994 Jun 21; 266(6 Pt 2):R1792-6. PubMed ID: 8024030 [Abstract] [Full Text] [Related]
9. Hyperpolarization of hepatocytes by 2,5-AM: implications for hepatic control of food intake. Scharrer E, Rossi R, Sutter DA, Seebacher MC, Boutellier S, Lutz TA. Am J Physiol; 1997 Mar 21; 272(3 Pt 2):R874-8. PubMed ID: 9087650 [Abstract] [Full Text] [Related]
10. Metabolic inhibitors synergistically decrease hepatic energy status and increase food intake. Ji H, Graczyk-Milbrandt G, Friedman MI. Am J Physiol Regul Integr Comp Physiol; 2000 Jun 21; 278(6):R1579-82. PubMed ID: 10848526 [Abstract] [Full Text] [Related]
11. In vivo studies of cellular energy state, pH, and sodium in rat liver after thermal injury. Xia ZF, Horton JW, Zhao PY, Bansal N, Babcock EE, Sherry AD, Malloy CR. J Appl Physiol (1985); 1994 Apr 21; 76(4):1507-11. PubMed ID: 8045826 [Abstract] [Full Text] [Related]
12. Temporal relationships between eating behavior and liver adenine nucleotides in rats treated with 2,5-AM. Koch JE, Ji H, Osbakken MD, Friedman MI. Am J Physiol; 1998 Mar 21; 274(3):R610-7. PubMed ID: 9530225 [Abstract] [Full Text] [Related]
13. Etomoxir, a fatty acid oxidation inhibitor, increases food intake and reduces hepatic energy status in rats. Horn CC, Ji H, Friedman MI. Physiol Behav; 2004 Mar 21; 81(1):157-62. PubMed ID: 15059695 [Abstract] [Full Text] [Related]
14. Hepatic control of feeding: effect of glucose, fructose, and mannitol infusion. Tordoff MG, Friedman MI. Am J Physiol; 1988 Jun 21; 254(6 Pt 2):R969-76. PubMed ID: 3132863 [Abstract] [Full Text] [Related]
17. Effects of the fructose analog, 2,5-anhydro-D-mannitol, on food intake and estrous cyclicity in Syrian hamsters. Schneider JE. Am J Physiol; 1997 Mar 21; 272(3 Pt 2):R935-9. PubMed ID: 9087657 [Abstract] [Full Text] [Related]