These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
113 related items for PubMed ID: 12973909
1. [Analysis of combined action of excitatory and inhibitory amino acids antagonists on postsynaptic potentials of motoneurone of frog Rana ridibunda]. Kurchavyĭ GG, Kalinina NI, Veselkin NP. Zh Evol Biokhim Fiziol; 2003; 39(3):250-9. PubMed ID: 12973909 [No Abstract] [Full Text] [Related]
2. [Different sensitivity of synaptic inputs of motor neurons to excitatory amino acid antagonists in the frog Rana ridibunda]. Kurchavyĭ GG, Kalinina NI, Veselkin NP. Zh Evol Biokhim Fiziol; 2003; 39(2):144-53. PubMed ID: 12815970 [No Abstract] [Full Text] [Related]
3. [Effect of metabotropic glutamate receptors on duration of the post-tetanic changes in postsynaptic potentials of motor neurons of the frog Rana ridibunda]. Mel'ian ZE, Kozhanov VM. Zh Evol Biokhim Fiziol; 1997; 33(4-5):475-83. PubMed ID: 9542045 [No Abstract] [Full Text] [Related]
4. [The effect of excitatory amino acid antagonists on postsynaptic potentials in the motoneurons of the frog Rana ridibunda]. Kurchavyĭ GG, Suderevskaia EI, Veselkin NP. Zh Evol Biokhim Fiziol; 1995; 31(5-6):562-72. PubMed ID: 8714295 [Abstract] [Full Text] [Related]
5. [Potentiation of postsynaptic potentials by gallamine in motoneurons of the frog Rana ridibunda]. Kalinina NI, Kurchavyĭ GG, Veselkin NP. Zh Evol Biokhim Fiziol; 2000; 36(3):229-36. PubMed ID: 11075445 [No Abstract] [Full Text] [Related]
6. [Effect of GABA and glycine on postsynaptic potentials of motor neurons of the frog Rana ridibunda]. Kurchavyĭ GG, Kalinina NI, Veselkin NP. Zh Evol Biokhim Fiziol; 2005; 41(6):520-9. PubMed ID: 16396468 [No Abstract] [Full Text] [Related]
7. [Effect of antagonists of inhibiting amino acids on motoneuron postsynaptic potentials in Rana ridibunda]. Kurchavyĭ GG, Kalinina NI, Veselkin NP. Zh Evol Biokhim Fiziol; 2006; 42(5):463-71. PubMed ID: 17087011 [No Abstract] [Full Text] [Related]
8. Serotonergic modulation of synaptic transmission and action potential firing in frog motoneurons. Ovsepian SV, Vesselkin NP. Brain Res; 2006 Aug 02; 1102(1):71-7. PubMed ID: 16806121 [Abstract] [Full Text] [Related]
9. Presynaptic angiotensin II AT1 receptors enhance inhibitory and excitatory synaptic neurotransmission to motoneurons and other ventral horn neurons in neonatal rat spinal cord. Oz M, Yang KH, O'donovan MJ, Renaud LP. J Neurophysiol; 2005 Aug 02; 94(2):1405-12. PubMed ID: 16061493 [Abstract] [Full Text] [Related]
10. Brain-derived neurotrophic factor acutely depresses excitatory synaptic transmission to GABAergic neurons in visual cortical slices. Jiang B, Kitamura A, Yasuda H, Sohya K, Maruyama A, Yanagawa Y, Obata K, Tsumoto T. Eur J Neurosci; 2004 Aug 02; 20(3):709-18. PubMed ID: 15255981 [Abstract] [Full Text] [Related]
11. Dual effect of GABA on descending monosynaptic excitatory postsynaptic potential in frog lumbar motoneurons. Ovsepian SV, Vesselkin NP. Neuroscience; 2004 Aug 02; 129(3):639-46. PubMed ID: 15541885 [Abstract] [Full Text] [Related]
12. [Study of mechanisms of the interneuronal interaction based on the reflection principal]. Bart AG, Klochkova NP, Kozhanov VM, Chmykhova NM. Zh Evol Biokhim Fiziol; 1997 Aug 02; 33(4-5):462-74. PubMed ID: 9542044 [No Abstract] [Full Text] [Related]
13. Action-potential-independent GABAergic tone mediated by nicotinic stimulation of immature striatal miniature synaptic transmission. Liu Z, Otsu Y, Vasuta C, Nawa H, Murphy TH. J Neurophysiol; 2007 Aug 02; 98(2):581-93. PubMed ID: 17553945 [Abstract] [Full Text] [Related]
14. Phospholipase A2 activation enhances inhibitory synaptic transmission in rat substantia gelatinosa neurons. Liu T, Fujita T, Nakatsuka T, Kumamoto E. J Neurophysiol; 2008 Mar 02; 99(3):1274-84. PubMed ID: 18216222 [Abstract] [Full Text] [Related]
15. Modulation of cellular and synaptic variability in the lamprey spinal cord. Parker D, Bevan S. J Neurophysiol; 2007 Jan 02; 97(1):44-56. PubMed ID: 17021027 [Abstract] [Full Text] [Related]
16. Monitoring synaptic transmission in primary neuronal cultures using local extracellular stimulation. Maximov A, Pang ZP, Tervo DG, Südhof TC. J Neurosci Methods; 2007 Mar 30; 161(1):75-87. PubMed ID: 17118459 [Abstract] [Full Text] [Related]
17. Dynamics of excitatory synaptic components in sustained firing at low rates. Wyart C, Cocco S, Bourdieu L, Léger JF, Herr C, Chatenay D. J Neurophysiol; 2005 Jun 30; 93(6):3370-80. PubMed ID: 15673554 [Abstract] [Full Text] [Related]
18. Effects of N-methyl-D-aspartate glutamate receptor antagonists on oscillatory signal propagation in the guinea-pig accessory olfactory bulb slice: characterization by optical, field potential and patch clamp recordings. Sugai T, Onoda N. Neuroscience; 2005 Jun 30; 135(2):583-94. PubMed ID: 16112479 [Abstract] [Full Text] [Related]
19. Postsynaptic IP3 receptor-mediated Ca2+ release modulates synaptic transmission in hippocampal neurons. Kelly PT, Mackinnon RL, Dietz RV, Maher BJ, Wang J. Brain Res Mol Brain Res; 2005 Apr 27; 135(1-2):232-48. PubMed ID: 15857686 [Abstract] [Full Text] [Related]
20. Modulation of excitatory synaptic transmission by endogenous glutamate acting on presynaptic group II mGluRs in rat substantia nigra compacta. Wang L, Kitai ST, Xiang Z. J Neurosci Res; 2005 Dec 15; 82(6):778-87. PubMed ID: 16273546 [Abstract] [Full Text] [Related] Page: [Next] [New Search]