These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
135 related items for PubMed ID: 12997183
1. Glycolysis and phosphate turnover in the human erythrocyte. GOURLEY DR. Arch Biochem Biophys; 1952 Sep; 40(1):13-9. PubMed ID: 12997183 [No Abstract] [Full Text] [Related]
2. [Effect of sodium fluoride and monoiodoacetic acid on glycolysis of human erythrocytes]. MANYAI S, SZEKELY M. Acta Physiol Acad Sci Hung; 1954 Sep; 5(1-2):7-18. PubMed ID: 13147909 [No Abstract] [Full Text] [Related]
3. [Glycolysis of human erythrocytes and permeability to orthophosphate ions]. Cartier P, Chedru J. Bull Soc Chim Biol (Paris); 1966 Sep; 48(12):1421-37. PubMed ID: 5982799 [No Abstract] [Full Text] [Related]
4. Inhibition of phosphate and arsenate uptake in yeast by monoiodoacetate, fluoride, 2,4-dinitrophenol and acetate. Borst-Pauwels GW, Jager S. Biochim Biophys Acta; 1969 Apr 08; 172(3):399-406. PubMed ID: 5782246 [No Abstract] [Full Text] [Related]
5. Erythrocyte glycolysis, 2,3-diphosphoglycerate and adenosine triphosphate concentration in uremic subjects: relationship to extracellular phosphate concentration. Lichtman MA, Miller DR. J Lab Clin Med; 1970 Aug 08; 76(2):267-79. PubMed ID: 5434006 [No Abstract] [Full Text] [Related]
6. [Changes in adenylpyrophosphate content and glycolysis of erythrocytes during ontogenesis]. BODROGI Z, MANYAI S. Kiserl Orvostud; 1956 Jul 08; 8(4):351-8. PubMed ID: 13377575 [No Abstract] [Full Text] [Related]
7. Influence of glycolysis on NADH content in human erythrocytes. Omachi A, Scott CB, Parry TE. Am J Physiol; 1969 Mar 08; 216(3):527-30. PubMed ID: 4303902 [No Abstract] [Full Text] [Related]
8. Orthophosphate transport in the erythrocyte of normal subjects and of patients with X-linked hypophosphatemia. Tenenhouse HS, Scriver CR. J Clin Invest; 1975 Mar 08; 55(3):644-54. PubMed ID: 1117070 [Abstract] [Full Text] [Related]
9. Effects of calcium and lead on potassium permeability of human erythrocyte ghosts. Riordan JR, Passow H. Biochim Biophys Acta; 1971 Dec 03; 249(2):601-5. PubMed ID: 5002556 [No Abstract] [Full Text] [Related]
10. Radiophosphate "closed" system efflux rate constant and ATP metabolism in intact human red cells. Imarisio JJ, Jamison TR. J Lab Clin Med; 1967 Jan 03; 69(1):23-36. PubMed ID: 6018068 [No Abstract] [Full Text] [Related]
11. Regulation of glycolysis in human erythrocytes. The mechanism of ATP concentration stabilization. Ataullakhanov FI, Vitvitsky VM, Zhabotinsky AM, Pichugin AV, Kholodenko BN, Ehrlich LI. Acta Biol Med Ger; 1981 Jan 03; 40(7-8):991-7. PubMed ID: 7331640 [Abstract] [Full Text] [Related]
12. Relationships among purine nucleoside metabolism, adenosine triphosphate catabolism, and glycolysis in human erythrocytes. Henderson JF, Zombor G, Burridge PW, Barankiewicz G, Smith CM. Can J Biochem; 1979 Jun 03; 57(6):873-8. PubMed ID: 476524 [Abstract] [Full Text] [Related]
14. Pyridine nucleotides in human erythrocytes in different metabolic states. Omachi A, Scott CB, Hegarty H. Biochim Biophys Acta; 1969 Jun 17; 184(1):139-47. PubMed ID: 4389327 [No Abstract] [Full Text] [Related]
19. The role of adenosine triphosphate in the transport of phosphate in the human erythrocyte. GOURLEY DR. Arch Biochem Biophys; 1952 Sep 17; 40(1):1-12. PubMed ID: 12997182 [No Abstract] [Full Text] [Related]
20. Potassium transport in human blood platelets. Cooley MH, Cohen P. J Lab Clin Med; 1967 Jul 17; 70(1):69-79. PubMed ID: 4226111 [No Abstract] [Full Text] [Related] Page: [Next] [New Search]