These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


148 related items for PubMed ID: 1304350

  • 41. Mutations in paired alpha-helices at the subunit interface of glycogen phosphorylase alter homotropic and heterotropic cooperativity.
    Buchbinder JL, Guinovart JJ, Fletterick RJ.
    Biochemistry; 1995 May 16; 34(19):6423-32. PubMed ID: 7756273
    [Abstract] [Full Text] [Related]

  • 42. Electrostatic effects in the control of glycogen phosphorylase by phosphorylation.
    Johnson LN, Barford D.
    Protein Sci; 1994 Oct 16; 3(10):1726-30. PubMed ID: 7849589
    [Abstract] [Full Text] [Related]

  • 43. Domain separation in the activation of glycogen phosphorylase a.
    Goldsmith EJ, Sprang SR, Hamlin R, Xuong NH, Fletterick RJ.
    Science; 1989 Aug 04; 245(4917):528-32. PubMed ID: 2756432
    [Abstract] [Full Text] [Related]

  • 44. Structural relationships among regulated and unregulated phosphorylases.
    Buchbinder JL, Rath VL, Fletterick RJ.
    Annu Rev Biophys Biomol Struct; 2001 Aug 04; 30():191-209. PubMed ID: 11340058
    [Abstract] [Full Text] [Related]

  • 45. Kinetic study on the dimer-tetramer interconversion of glycogen phosphorylase a.
    Wang ZX.
    Eur J Biochem; 1999 Feb 04; 259(3):609-17. PubMed ID: 10092844
    [Abstract] [Full Text] [Related]

  • 46. Tracking conformational states in allosteric transitions of phosphorylase.
    Browner MF, Fauman EB, Fletterick RJ.
    Biochemistry; 1992 Nov 24; 31(46):11297-304. PubMed ID: 1445867
    [Abstract] [Full Text] [Related]

  • 47. Structural Insights into the Regulation of Staphylococcus aureus Phosphofructokinase by Tetramer-Dimer Conversion.
    Tian T, Wang C, Wu M, Zhang X, Zang J.
    Biochemistry; 2018 Jul 24; 57(29):4252-4262. PubMed ID: 29940104
    [Abstract] [Full Text] [Related]

  • 48. Glycogen phosphorylase: control by phosphorylation and allosteric effectors.
    Johnson LN.
    FASEB J; 1992 Mar 24; 6(6):2274-82. PubMed ID: 1544539
    [Abstract] [Full Text] [Related]

  • 49. Glycogen phosphorylase: a multifaceted enzyme.
    Johnson LN.
    Carlsberg Res Commun; 1989 Mar 24; 54(6):203-29. PubMed ID: 2490368
    [No Abstract] [Full Text] [Related]

  • 50. Mechanism of regulation in yeast glycogen phosphorylase.
    Lin K, Hwang PK, Fletterick RJ.
    J Biol Chem; 1995 Nov 10; 270(45):26833-9. PubMed ID: 7592925
    [Abstract] [Full Text] [Related]

  • 51. Orthophosphate binding at the dimer interface of Corynebacterium callunae starch phosphorylase: mutational analysis of its role for activity and stability of the enzyme.
    Mueller M, Nidetzky B.
    BMC Biochem; 2010 Jan 29; 11():8. PubMed ID: 20113461
    [Abstract] [Full Text] [Related]

  • 52. Glycogen phosphorylase revisited: extending the resolution of the R- and T-state structures of the free enzyme and in complex with allosteric activators.
    Leonidas DD, Zographos SE, Tsitsanou KE, Skamnaki VT, Stravodimos G, Kyriakis E.
    Acta Crystallogr F Struct Biol Commun; 2021 Sep 01; 77(Pt 9):303-311. PubMed ID: 34473107
    [Abstract] [Full Text] [Related]

  • 53. Ultracentrifugal studies of the effect of molecular crowding by trimethylamine N-oxide on the self-association of muscle glycogen phosphorylase b.
    Chebotareva NA, Harding SE, Winzor DJ.
    Eur J Biochem; 2001 Feb 01; 268(3):506-13. PubMed ID: 11168388
    [Abstract] [Full Text] [Related]

  • 54. Identification of the molecular trigger for allosteric activation in glycogen phosphorylase.
    Browner MF, Hackos D, Fletterick R.
    Nat Struct Biol; 1994 May 01; 1(5):327-33. PubMed ID: 7664039
    [Abstract] [Full Text] [Related]

  • 55. Deciphering the role of dimer interface in intrinsic dynamics and allosteric pathways underlying the functional transformation of DNMT3A.
    Liang Z, Hu J, Yan W, Jiang H, Hu G, Luo C.
    Biochim Biophys Acta Gen Subj; 2018 Jul 01; 1862(7):1667-1679. PubMed ID: 29674125
    [Abstract] [Full Text] [Related]

  • 56. Control by phosphorylation.
    Johnson LN, O'Reilly M.
    Curr Opin Struct Biol; 1996 Dec 01; 6(6):762-9. PubMed ID: 8994876
    [Abstract] [Full Text] [Related]

  • 57. Chemical shift mapping of gammadelta resolvase dimer and activated tetramer: mechanistic implications for DNA strand exchange.
    Gehman JD, Cocco MJ, Grindley ND.
    Biochim Biophys Acta; 2008 Dec 01; 1784(12):2086-92. PubMed ID: 18840551
    [Abstract] [Full Text] [Related]

  • 58. Unsuspected pathway of the allosteric transition in hemoglobin.
    Fischer S, Olsen KW, Nam K, Karplus M.
    Proc Natl Acad Sci U S A; 2011 Apr 05; 108(14):5608-13. PubMed ID: 21415366
    [Abstract] [Full Text] [Related]

  • 59. Distinct phosphorylation signals converge at the catalytic center in glycogen phosphorylases.
    Lin K, Hwang PK, Fletterick RJ.
    Structure; 1997 Nov 15; 5(11):1511-23. PubMed ID: 9384566
    [Abstract] [Full Text] [Related]

  • 60. Loop-driven conformational transition between the alternative and collapsed form of prethrombin-2: targeted molecular dynamics study.
    Wu S.
    J Biomol Struct Dyn; 2017 Jan 15; 35(1):119-127. PubMed ID: 27471844
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.