These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


148 related items for PubMed ID: 1304350

  • 61.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 62. Phosphorylase: a biological transducer.
    Browner MF, Fletterick RJ.
    Trends Biochem Sci; 1992 Feb; 17(2):66-71. PubMed ID: 1566331
    [Abstract] [Full Text] [Related]

  • 63.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 64. Towards time-resolved diffraction studies with glycogen phosphorylase.
    Duke EM, Hadfield A, Martin JL, Clifton IJ, Hajdu J, Johnson LN, Reid GP, Trentham DR, Bruce I, Fleet GW.
    Ciba Found Symp; 1991 Feb; 161():75-86; discussion 86-90. PubMed ID: 1814698
    [Abstract] [Full Text] [Related]

  • 65. beta-Glucosyltransferase and phosphorylase reveal their common theme.
    Artymiuk PJ, Rice DW, Poirrette AR, Willett P.
    Nat Struct Biol; 1995 Feb; 2(2):117-20. PubMed ID: 7749914
    [No Abstract] [Full Text] [Related]

  • 66. One-step evolution of a dimer from a monomeric protein.
    Green SM, Gittis AG, Meeker AK, Lattman EE.
    Nat Struct Biol; 1995 Sep; 2(9):746-51. PubMed ID: 7552745
    [Abstract] [Full Text] [Related]

  • 67. Free energy of burying hydrophobic residues in the interface between protein subunits.
    Vallone B, Miele AE, Vecchini P, Chiancone E, Brunori M.
    Proc Natl Acad Sci U S A; 1998 May 26; 95(11):6103-7. PubMed ID: 9600924
    [Abstract] [Full Text] [Related]

  • 68.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 69. Soft regions of protein surface are potent for stable dimer formation.
    Hadi-Alijanvand H.
    J Biomol Struct Dyn; 2020 Aug 26; 38(12):3587-3598. PubMed ID: 31476974
    [Abstract] [Full Text] [Related]

  • 70.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 71. An (R)-Selective Transaminase From Thermomyces stellatus: Stabilizing the Tetrameric Form.
    Heckmann CM, Gourlay LJ, Dominguez B, Paradisi F.
    Front Bioeng Biotechnol; 2020 Aug 26; 8():707. PubMed ID: 32793563
    [Abstract] [Full Text] [Related]

  • 72. A spin label probe for the conformational change on conversion of phosphorylase b to phosphorylase a.
    Dwek RA, Griffiths JR, Radda GK, Strauss U.
    FEBS Lett; 1972 Dec 01; 28(2):161-164. PubMed ID: 11946847
    [No Abstract] [Full Text] [Related]

  • 73. Allosteric Regulation of Glycogen Phosphorylase by Order/Disorder Transition of the 250' and 280s Loops.
    Kish M, Subramanian S, Smith V, Lethbridge N, Cole L, Vollmer F, Bond NJ, Phillips JJ.
    Biochemistry; 2023 Apr 18; 62(8):1360-1368. PubMed ID: 36989206
    [Abstract] [Full Text] [Related]

  • 74. Structural Basis for Allostery in PLP-dependent Enzymes.
    Tran JU, Brown BL.
    Front Mol Biosci; 2022 Apr 18; 9():884281. PubMed ID: 35547395
    [Abstract] [Full Text] [Related]

  • 75. Outliers in SAR and QSAR: 4. effects of allosteric protein-ligand interactions on the classical quantitative structure-activity relationships.
    Kim KH.
    Mol Divers; 2022 Dec 18; 26(6):3057-3092. PubMed ID: 35192113
    [Abstract] [Full Text] [Related]

  • 76. Glycogen phosphorylase revisited: extending the resolution of the R- and T-state structures of the free enzyme and in complex with allosteric activators.
    Leonidas DD, Zographos SE, Tsitsanou KE, Skamnaki VT, Stravodimos G, Kyriakis E.
    Acta Crystallogr F Struct Biol Commun; 2021 Sep 01; 77(Pt 9):303-311. PubMed ID: 34473107
    [Abstract] [Full Text] [Related]

  • 77. McArdle Disease: New Insights into Its Underlying Molecular Mechanisms.
    Llavero F, Arrazola Sastre A, Luque Montoro M, Gálvez P, Lacerda HM, Parada LA, Zugaza JL.
    Int J Mol Sci; 2019 Nov 25; 20(23):. PubMed ID: 31775340
    [Abstract] [Full Text] [Related]

  • 78. The regulation of glycogenolysis in the brain.
    Nadeau OW, Fontes JD, Carlson GM.
    J Biol Chem; 2018 May 11; 293(19):7099-7107. PubMed ID: 29483194
    [Abstract] [Full Text] [Related]

  • 79. Insights into Brain Glycogen Metabolism: THE STRUCTURE OF HUMAN BRAIN GLYCOGEN PHOSPHORYLASE.
    Mathieu C, Li de la Sierra-Gallay I, Duval R, Xu X, Cocaign A, Léger T, Woffendin G, Camadro JM, Etchebest C, Haouz A, Dupret JM, Rodrigues-Lima F.
    J Biol Chem; 2016 Aug 26; 291(35):18072-83. PubMed ID: 27402852
    [Abstract] [Full Text] [Related]

  • 80. Rac1 protein regulates glycogen phosphorylase activation and controls interleukin (IL)-2-dependent T cell proliferation.
    Arrizabalaga O, Lacerda HM, Zubiaga AM, Zugaza JL.
    J Biol Chem; 2012 Apr 06; 287(15):11878-90. PubMed ID: 22337875
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.