These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


160 related items for PubMed ID: 1306477

  • 21. Age-related changes in normal and cataractous human lens crystallins, separated by fast-performance liquid chromatography.
    Pereira PC, Ramalho JS, Faro CJ, Mota MC.
    Ophthalmic Res; 1994; 26(3):149-57. PubMed ID: 8090432
    [Abstract] [Full Text] [Related]

  • 22. Distribution of ferritin chains in canine lenses with and without age-related nuclear cataracts.
    Goralska M, Nagar S, Fleisher LN, McGahan MC.
    Mol Vis; 2009 Nov 20; 15():2404-10. PubMed ID: 19956561
    [Abstract] [Full Text] [Related]

  • 23. Camel lens crystallins glycosylation and high molecular weight aggregate formation in the presence of ferrous ions and glucose.
    Duhaiman AS, Rabbani N, Cotlier E.
    Biochem Biophys Res Commun; 1990 Dec 31; 173(3):823-32. PubMed ID: 2268346
    [Abstract] [Full Text] [Related]

  • 24. [Significance of fluorescence spectra for the evaluation of lens opacities].
    Strobel J, Jacobi KW, Lohmann W, Schmehl W, Wunderling M, Ibrahim M.
    Klin Monbl Augenheilkd; 1986 Aug 31; 189(2):141-3. PubMed ID: 3761991
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Role of trace elements in senile cataract.
    Srivastava VK, Varshney N, Pandey DC.
    Acta Ophthalmol (Copenh); 1992 Dec 31; 70(6):839-41. PubMed ID: 1488898
    [Abstract] [Full Text] [Related]

  • 27. Loss of cytoskeletal proteins and lens cell opacification in the selenite cataract model.
    Matsushima H, David LL, Hiraoka T, Clark JI.
    Exp Eye Res; 1997 Mar 31; 64(3):387-95. PubMed ID: 9196390
    [Abstract] [Full Text] [Related]

  • 28. Further studies on the dynamic changes of glutathione and protein-thiol mixed disulfides in H2O2 induced cataract in rat lenses: distributions and effect of aging.
    Lou MF, Xu GT, Cui XL.
    Curr Eye Res; 1995 Oct 31; 14(10):951-8. PubMed ID: 8549161
    [Abstract] [Full Text] [Related]

  • 29. Protein and electrolyte alterations in human senile cataract.
    Khurana AK, Lal H, Chauhan BS, Parmar IP, Saini AS.
    Exp Eye Res; 1982 Aug 31; 35(2):131-5. PubMed ID: 7151882
    [Abstract] [Full Text] [Related]

  • 30. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses.
    Padayatti PS, Ng AS, Uchida K, Glomb MA, Nagaraj RH.
    Invest Ophthalmol Vis Sci; 2001 May 31; 42(6):1299-304. PubMed ID: 11328743
    [Abstract] [Full Text] [Related]

  • 31. Nuclear cataract and light scattering in cultured lenses from guinea pig and rabbit.
    Fukiage C, Azuma M, Nakamura Y, Tamada Y, Shearer TR.
    Curr Eye Res; 1998 Jun 31; 17(6):623-35. PubMed ID: 9663852
    [Abstract] [Full Text] [Related]

  • 32. Lens Opacities Classification System.
    Chylack LT, Leske MC, Sperduto R, Khu P, McCarthy D.
    Arch Ophthalmol; 1988 Mar 31; 106(3):330-4. PubMed ID: 3345149
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Quantitative proteomics analysis with iTRAQ in human lenses with nuclear cataracts of different axial lengths.
    Zhou H, Yan H, Yan W, Wang X, Ma Y, Wang J.
    Mol Vis; 2016 Mar 31; 22():933-43. PubMed ID: 27559289
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.