These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Mechanism of lactose translocation in membrane vesicles from Escherichia coli. 1. Effect of pH on efflux, exchange, and counterflow. Kaczorowski GJ, Kaback HR. Biochemistry; 1979 Aug 21; 18(17):3691-7. PubMed ID: 38836 [No Abstract] [Full Text] [Related]
5. Ferrichrome transport in inner membrane vesicles of Escherichia coli K12. Negrin RS, Neilands JB. J Biol Chem; 1978 Apr 10; 253(7):2339-42. PubMed ID: 344313 [No Abstract] [Full Text] [Related]
6. [Electrochemical potential difference for H+-ions as a regulator of redox profile of membrane during ATP-dependent ion transport in E. coli]. Bagramian KA, Martirosov SM. Biofizika; 1990 Apr 10; 35(4):624-7. PubMed ID: 2245226 [Abstract] [Full Text] [Related]
7. Estimation of internal pH in cells of blue-green algae in the dark and under illumination. Masamoto K, Nishimura M. J Biochem; 1977 Aug 10; 82(2):483-7. PubMed ID: 72067 [Abstract] [Full Text] [Related]
8. Mode of action of colicins Ia, E1 and K. Konisky J, Tokuda H. Zentralbl Bakteriol Orig A; 1979 Jun 10; 244(1):105-20. PubMed ID: 388932 [Abstract] [Full Text] [Related]
9. The electrochemical gradient of protons and its relationship to active transport in Escherichia coli membrane vesicles. Ramos S, Schuldiner S, Kaback HR. Proc Natl Acad Sci U S A; 1976 Jun 10; 73(6):1892-6. PubMed ID: 6961 [Abstract] [Full Text] [Related]
10. Energy coupling in lysolecithin-treated submitochondrial particles. Komai H, Hunter DR, Southard JH, Haworth RA, Green DE. Biochem Biophys Res Commun; 1976 Apr 05; 69(3):695-704. PubMed ID: 5087 [No Abstract] [Full Text] [Related]
11. Energetics underlying the process of long-chain fatty acid transport. Azizan A, Sherin D, DiRusso CC, Black PN. Arch Biochem Biophys; 1999 May 15; 365(2):299-306. PubMed ID: 10328825 [Abstract] [Full Text] [Related]
12. Energetically distinct early and late stages of HlyB/HlyD-dependent secretion across both Escherichia coli membranes. Koronakis V, Hughes C, Koronakis E. EMBO J; 1991 Nov 15; 10(11):3263-72. PubMed ID: 1915293 [Abstract] [Full Text] [Related]
14. [The role of a protonmotive force in genetic transformation of Bacillus subtilis]. Griniuvene BB, Grinius LL, Kiasushinite RIu, Khaustova LP, Iasĭtis AA. Biokhimiia; 1978 Sep 15; 43(9):1539-48. PubMed ID: 102371 [Abstract] [Full Text] [Related]
15. The electrochemical proton gradient in Escherichia coli membrane vesicles. Ramos S, Kaback HR. Biochemistry; 1977 Mar 08; 16(5):848-54. PubMed ID: 14664 [Abstract] [Full Text] [Related]
16. Extrusion of sodium ions energized by respiration and glycolysis in Escherichia coli. Tsuchiya T, Takeda K. J Biochem; 1979 Jul 08; 86(1):225-30. PubMed ID: 39066 [Abstract] [Full Text] [Related]
17. An ecf mutation in Escherichia coli pleiotropically affecting energy coupling in active transport but not generation or maintenance of membrane potential. Hong JS. J Biol Chem; 1977 Dec 10; 252(23):8582-8. PubMed ID: 21876 [No Abstract] [Full Text] [Related]
18. Neutral amino acid transport in surface membrane vesicles isolated from mouse fibroblasts: intrinsic and extrinsic models of regulation. Lever JE. J Supramol Struct; 1977 Dec 10; 6(1):103-24. PubMed ID: 197316 [No Abstract] [Full Text] [Related]
19. Transport of fatty acid is obligatory coupled with H+ entry in spheroplasts of Escherichia coli K12. Kameda K, Suzuki LK, Imai Y. Biochem Int; 1987 Feb 10; 14(2):227-34. PubMed ID: 3034279 [Abstract] [Full Text] [Related]