These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


105 related items for PubMed ID: 1311111

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Characterization of descending facilitation and inhibition of spinal nociceptive transmission from the nuclei reticularis gigantocellularis and gigantocellularis pars alpha in the rat.
    Zhuo M, Gebhart GF.
    J Neurophysiol; 1992 Jun; 67(6):1599-614. PubMed ID: 1352804
    [Abstract] [Full Text] [Related]

  • 4. Interactions between nucleus centrum medianum and gigantocellular nociceptive neurons.
    Pearl GS, Anderson KV.
    Brain Res Bull; 1980 Jun; 5(2):203-6. PubMed ID: 7378859
    [Abstract] [Full Text] [Related]

  • 5. Lateral hypothalamic stimulation can augment or attenuate nucleus gigantocellularis escape: evidence for appetite-associated aversion amelioration.
    Simson PE, Coons EE.
    Behav Neurosci; 1989 Jun; 103(3):612-20. PubMed ID: 2544204
    [Abstract] [Full Text] [Related]

  • 6. Effects of stimulation in nucleus reticularis gigantocellularis on the activity of spinothalamic tract neurons in the monkey.
    Haber LH, Martin RF, Chatt AB, Willis WD.
    Brain Res; 1978 Sep 15; 153(1):163-8. PubMed ID: 209875
    [No Abstract] [Full Text] [Related]

  • 7. Inhibition and excitation of primate spinothalamic tract neurons by stimulation in region of nucleus reticularis gigantocellularis.
    Haber LH, Martin RF, Chung JM, Willis WD.
    J Neurophysiol; 1980 Jun 15; 43(6):1578-93. PubMed ID: 6251179
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Lateral hypothalamic stimulation gates nucleus gigantocellularis-induced aversion via a reward-independent process.
    Carr KD, Coons EE.
    Brain Res; 1982 Jan 28; 232(2):293-316. PubMed ID: 7188027
    [Abstract] [Full Text] [Related]

  • 10. Descending inhibitory influences from periaqueductal gray, nucleus raphe magnus, and adjacent reticular formation. I. Effects on lumbar spinal cord nociceptive and nonnociceptive neurons.
    Gray BG, Dostrovsky JO.
    J Neurophysiol; 1983 Apr 28; 49(4):932-47. PubMed ID: 6854362
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Effects of stimulating in raphe nuclei and in reticular formation on response of spinothalamic neurons to mechanical stimuli.
    McCreery DB, Bloedel JR, Hames EG.
    J Neurophysiol; 1979 Jan 28; 42(1 Pt 1):166-82. PubMed ID: 219156
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Neuronal receptive field properties in feline nucleus reticularis gigantocellularis.
    Pearl GS, Anderson KV.
    Brain Res Bull; 1978 Jan 28; 3(3):241-4. PubMed ID: 709385
    [Abstract] [Full Text] [Related]

  • 15. Excitatory connection from lateral hypothalamic self-stimulation sites to escape sites in medullary reticular formation.
    Keene JJ, Casey KL.
    Exp Neurol; 1970 Jul 28; 28(1):155-66. PubMed ID: 5433659
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Pain-signalling systems in the dorsal and ventral spinal cord.
    Dennis SG, Melzack R.
    Pain; 1977 Dec 28; 4(2):97-132. PubMed ID: 341042
    [No Abstract] [Full Text] [Related]

  • 18. Reticular formation influence on neuronal transmission from perforant pathway through dentate gyrus.
    Winson J.
    Brain Res; 1981 Nov 23; 225(1):37-49. PubMed ID: 6271341
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.