These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


162 related items for PubMed ID: 13129609

  • 1. The XerC recombinase of Proteus mirabilis: characterization and interaction with other tyrosine recombinases.
    Villion M, Szatmari G.
    FEMS Microbiol Lett; 2003 Sep 12; 226(1):65-71. PubMed ID: 13129609
    [Abstract] [Full Text] [Related]

  • 2. Cloning and characterisation of the Proteus mirabilis xerD gene.
    Villion M, Szatmari G.
    FEMS Microbiol Lett; 1998 Jul 01; 164(1):83-90. PubMed ID: 9675854
    [Abstract] [Full Text] [Related]

  • 3. Determinants of selectivity in Xer site-specific recombination.
    Blakely G, Sherratt D.
    Genes Dev; 1996 Mar 15; 10(6):762-73. PubMed ID: 8598302
    [Abstract] [Full Text] [Related]

  • 4. C-terminal interactions between the XerC and XerD site-specific recombinases.
    Spiers AJ, Sherratt DJ.
    Mol Microbiol; 1999 Jun 15; 32(5):1031-42. PubMed ID: 10361305
    [Abstract] [Full Text] [Related]

  • 5. Xer recombination in Escherichia coli. Site-specific DNA topoisomerase activity of the XerC and XerD recombinases.
    Cornet F, Hallet B, Sherratt DJ.
    J Biol Chem; 1997 Aug 29; 272(35):21927-31. PubMed ID: 9268326
    [Abstract] [Full Text] [Related]

  • 6. Interactions of the site-specific recombinases XerC and XerD with the recombination site dif.
    Blakely GW, Sherratt DJ.
    Nucleic Acids Res; 1994 Dec 25; 22(25):5613-20. PubMed ID: 7838714
    [Abstract] [Full Text] [Related]

  • 7. Characterization of the Streptococcus suis XerS recombinase and its unconventional cleavage of the difSL site.
    Leroux M, Jia F, Szatmari G.
    FEMS Microbiol Lett; 2011 Nov 25; 324(2):135-41. PubMed ID: 22092814
    [Abstract] [Full Text] [Related]

  • 8. Functional analysis of the C-terminal domains of the site-specific recombinases XerC and XerD.
    Ferreira H, Butler-Cole B, Burgin A, Baker R, Sherratt DJ, Arciszewska LK.
    J Mol Biol; 2003 Jun 27; 330(1):15-27. PubMed ID: 12818199
    [Abstract] [Full Text] [Related]

  • 9. Binding and cleavage of nicked substrates by site-specific recombinases XerC and XerD.
    Blakely GW, Davidson AO, Sherratt DJ.
    J Mol Biol; 1997 Jan 10; 265(1):30-9. PubMed ID: 8995522
    [Abstract] [Full Text] [Related]

  • 10. Differences in resolution of mwr-containing plasmid dimers mediated by the Klebsiella pneumoniae and Escherichia coli XerC recombinases: potential implications in dissemination of antibiotic resistance genes.
    Bui D, Ramiscal J, Trigueros S, Newmark JS, Do A, Sherratt DJ, Tolmasky ME.
    J Bacteriol; 2006 Apr 10; 188(8):2812-20. PubMed ID: 16585742
    [Abstract] [Full Text] [Related]

  • 11. Chromosomal Amplification of the blaOXA-58 Carbapenemase Gene in a Proteus mirabilis Clinical Isolate.
    Girlich D, Bonnin RA, Bogaerts P, De Laveleye M, Huang DT, Dortet L, Glaser P, Glupczynski Y, Naas T.
    Antimicrob Agents Chemother; 2017 Feb 10; 61(2):. PubMed ID: 27855079
    [Abstract] [Full Text] [Related]

  • 12. In vivo phase variation of MR/P fimbrial gene expression in Proteus mirabilis infecting the urinary tract.
    Zhao H, Li X, Johnson DE, Blomfield I, Mobley HL.
    Mol Microbiol; 1997 Mar 10; 23(5):1009-19. PubMed ID: 9076737
    [Abstract] [Full Text] [Related]

  • 13. Recombinase binding specificity at the chromosome dimer resolution site dif of Escherichia coli.
    Hayes F, Sherratt DJ.
    J Mol Biol; 1997 Feb 28; 266(3):525-37. PubMed ID: 9067608
    [Abstract] [Full Text] [Related]

  • 14. Sequential strand exchange by XerC and XerD during site-specific recombination at dif.
    Blakely GW, Davidson AO, Sherratt DJ.
    J Biol Chem; 2000 Apr 07; 275(14):9930-6. PubMed ID: 10744667
    [Abstract] [Full Text] [Related]

  • 15. Structure-function correlations in the XerD site-specific recombinase revealed by pentapeptide scanning mutagenesis.
    Cao Y, Hallet B, Sherratt DJ, Hayes F.
    J Mol Biol; 1997 Nov 21; 274(1):39-53. PubMed ID: 9398514
    [Abstract] [Full Text] [Related]

  • 16. Detection of XerC and XerD recombinases in gram-negative bacteria of the family Enterobacteriaceae.
    Sirois S, Szatmari G.
    J Bacteriol; 1995 Jul 21; 177(14):4183-6. PubMed ID: 7608100
    [Abstract] [Full Text] [Related]

  • 17. Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12.
    Blakely G, May G, McCulloch R, Arciszewska LK, Burke M, Lovett ST, Sherratt DJ.
    Cell; 1993 Oct 22; 75(2):351-61. PubMed ID: 8402918
    [Abstract] [Full Text] [Related]

  • 18. Recombination at ColE1 cer requires the Escherichia coli xerC gene product, a member of the lambda integrase family of site-specific recombinases.
    Colloms SD, Sykora P, Szatmari G, Sherratt DJ.
    J Bacteriol; 1990 Dec 22; 172(12):6973-80. PubMed ID: 2254268
    [Abstract] [Full Text] [Related]

  • 19. The tet39 Determinant and the msrE-mphE Genes in Acinetobacter Plasmids Are Each Part of Discrete Modules Flanked by Inversely Oriented pdif (XerC-XerD) Sites.
    Blackwell GA, Hall RM.
    Antimicrob Agents Chemother; 2017 Aug 22; 61(8):. PubMed ID: 28533235
    [Abstract] [Full Text] [Related]

  • 20. Stability by multimer resolution of pJHCMW1 is due to the Tn1331 resolvase and not to the Escherichia coli Xer system.
    Tolmasky ME, Colloms S, Blakely G, Sherratt DJ.
    Microbiology (Reading); 2000 Mar 22; 146 ( Pt 3)():581-589. PubMed ID: 10746761
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.