These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
190 related items for PubMed ID: 1313528
1. Reduction of erythrocyte (Na(+)-K+) ATPase activities in non-insulin-dependent diabetic patients with hyperkalemia. Mimura M, Makino H, Kanatsuka A, Yoshida S. Metabolism; 1992 Apr; 41(4):426-30. PubMed ID: 1313528 [Abstract] [Full Text] [Related]
2. Reduction of erythrocyte (Na(+)-K+)ATPase activity in type 2 (non-insulin-dependent) diabetic patients with microalbuminuria. Mimura M, Makino H, Kanatsuka A, Asai T, Yoshida S. Horm Metab Res; 1994 Jan; 26(1):33-8. PubMed ID: 8150421 [Abstract] [Full Text] [Related]
3. Reduction of erythrocyte (Na+-K+)ATPase activity in type 1 (insulin-dependent) diabetic subjects and its activation by homologous plasma. Finotti P, Palatini P. Diabetologia; 1986 Sep; 29(9):623-8. PubMed ID: 3025045 [Abstract] [Full Text] [Related]
4. Relation of erythrocyte Na+-K+ ATPase activity and cholesterol and oxidative stress in patients with type 2 diabetes mellitus. Konukoglu D, Kemerli GD, Sabuncu T, Hatemi H. Clin Invest Med; 2003 Dec; 26(6):279-84. PubMed ID: 14690302 [Abstract] [Full Text] [Related]
5. Changes in Na,K-adenosine triphosphatase (ATPase) concentration and Na,K-ATPase-dependent adenosine triphosphate turnover in human erythrocytes in diabetes. Garner MH. Metabolism; 1996 Aug; 45(8):927-34. PubMed ID: 8769346 [Abstract] [Full Text] [Related]
13. Low erythrocyte Na/K-pump activity and number in northeast Thailand adults: evidence suggesting an acquired disorder. Tosukhowong P, Tungsanga K, Kittinantavorakoon C, Chaitachawong C, Pansin P, Sriboonlue P, Sitprija V. Metabolism; 1996 Jul; 45(7):804-9. PubMed ID: 8692012 [Abstract] [Full Text] [Related]
14. Sialic acid, diabetes, and aging: a study on the erythrocyte membrane. Mazzanti L, Rabini RA, Salvolini E, Tesei M, Martarelli D, Venerando B, Curatola G. Metabolism; 1997 Jan; 46(1):59-61. PubMed ID: 9005970 [Abstract] [Full Text] [Related]
15. The relationship between red blood cell Na/K-ATPase activities and diabetic complications in patients with type 2 diabetes mellitus. Koc B, Erten V, Yilmaz MI, Sonmez A, Kocar IH. Endocrine; 2003 Aug; 21(3):273-8. PubMed ID: 14515013 [Abstract] [Full Text] [Related]
16. The effects ex vivo and in vitro of insulin and C-peptide on Na/K adenosine triphosphatase activity in red blood cell membranes of type 1 diabetic patients. Djemli-Shipkolye A, Gallice P, Coste T, Jannot MF, Tsimaratos M, Raccah D, Vague P. Metabolism; 2000 Jul; 49(7):868-72. PubMed ID: 10909997 [Abstract] [Full Text] [Related]
17. Electrolytes and NA(+)-K(+)-ATPase: potential risk factors for the development of diabetic nephropathy. Shahid SM, Mahboob T. Pak J Pharm Sci; 2008 Apr; 21(2):172-9. PubMed ID: 18390448 [Abstract] [Full Text] [Related]
18. Diabetes mellitus and subjects' ageing: a study on the ATP content and ATP-related enzyme activities in human erythrocytes. Rabini RA, Petruzzi E, Staffolani R, Tesei M, Fumelli P, Pazzagli M, Mazzanti L. Eur J Clin Invest; 1997 Apr; 27(4):327-32. PubMed ID: 9134382 [Abstract] [Full Text] [Related]
19. Association of hypoglutathionemia with reduced Na+/K+ ATPase activity in type 2 diabetes and microangiopathy. Sampathkumar R, Balasubramanyam M, Tara C, Rema M, Mohan V. Mol Cell Biochem; 2006 Jan; 282(1-2):169-76. PubMed ID: 16317524 [Abstract] [Full Text] [Related]