These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
58 related items for PubMed ID: 1313867
1. Predominant role for nitric oxide in the relaxation induced by acetylcholine in cat cerebral arteries. Alonso MJ, Salaices M, Sanchez-Ferrer CF, Marin J. J Pharmacol Exp Ther; 1992 Apr; 261(1):12-20. PubMed ID: 1313867 [Abstract] [Full Text] [Related]
2. Nitric-oxide-related and non-related mechanisms in the acetylcholine-evoked relaxations in cat femoral arteries. Alonso MJ, Salaices M, Sánchez-Ferrer CF, Ponte A, López-Rico M, Marín J. J Vasc Res; 1993 Apr; 30(6):339-47. PubMed ID: 7694666 [Abstract] [Full Text] [Related]
3. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries. Prieto D, Simonsen U, Hernández M, García-Sacristán A. Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568 [Abstract] [Full Text] [Related]
4. Analysis of acetylcholine-induced relaxation of rabbit isolated middle cerebral artery: effects of inhibitors of nitric oxide synthesis, Na,K-ATPase, and ATP-sensitive K channels. Parsons AA, Schilling L, Wahl M. J Cereb Blood Flow Metab; 1991 Jul; 11(4):700-4. PubMed ID: 1646828 [Abstract] [Full Text] [Related]
6. Effects of L-arginine analogues in isolated cat cerebral arteries. Fraile ML, López de Pablo AL, Marco EJ, Sanz L, Moreno MJ, Conde MV. Rev Esp Fisiol; 1993 Sep; 49(3):187-93. PubMed ID: 8310170 [Abstract] [Full Text] [Related]
7. Role of nitric oxide and Ca++-dependent K+ channels in mediating heterogeneous microvascular responses to acetylcholine in different vascular beds. Clark SG, Fuchs LC. J Pharmacol Exp Ther; 1997 Sep; 282(3):1473-9. PubMed ID: 9316861 [Abstract] [Full Text] [Related]
8. Glycyrrhetinic acid-sensitive mechanism does not make a major contribution to non-prostanoid, non-nitric oxide mediated endothelium-dependent relaxation of rat mesenteric artery in response to acetylcholine. Tanaka Y, Otsuka A, Tanaka H, Shigenobu K. Res Commun Mol Pathol Pharmacol; 1999 Mar; 103(3):227-39. PubMed ID: 10509734 [Abstract] [Full Text] [Related]
9. Androgen deprivation facilitates acetylcholine-induced relaxation by superoxide anion generation. Ferrer M, Tejera N, Marín J, Balfagón G. Clin Sci (Lond); 1999 Dec; 97(6):625-31. PubMed ID: 10585889 [Abstract] [Full Text] [Related]
10. Roles of calcium-activated and voltage-gated delayed rectifier potassium channels in endothelium-dependent vasorelaxation of the rabbit middle cerebral artery. Dong H, Waldron GJ, Cole WC, Triggle CR. Br J Pharmacol; 1998 Mar; 123(5):821-32. PubMed ID: 9535009 [Abstract] [Full Text] [Related]
12. Endothelium-dependent relaxation by substance P in human isolated omental arteries and veins: relative contribution of prostanoids, nitric oxide and hyperpolarization. Wallerstedt SM, Bodelsson M. Br J Pharmacol; 1997 Jan; 120(1):25-30. PubMed ID: 9117094 [Abstract] [Full Text] [Related]
13. Varying extracellular [K+]: a functional approach to separating EDHF- and EDNO-related mechanisms in perfused rat mesenteric arterial bed. Adeagbo AS, Triggle CR. J Cardiovasc Pharmacol; 1993 Mar; 21(3):423-9. PubMed ID: 7681503 [Abstract] [Full Text] [Related]
14. Role of the L-arginine-nitric oxide pathway in the changes in cerebrovascular reactivity following hemorrhagic hypotension and retransfusion. Szabó C, Csáki C, Benyó Z, Reivich M, Kovách AG. Circ Shock; 1992 Aug; 37(4):307-16. PubMed ID: 1446389 [Abstract] [Full Text] [Related]
15. Role of voltage-dependent potassium channels and myo-endothelial gap junctions in 4-aminopyridine-induced inhibition of acetylcholine relaxation in rat carotid artery. Gupta PK, Subramani J, Leo MD, Sikarwar AS, Parida S, Prakash VR, Mishra SK. Eur J Pharmacol; 2008 Sep 04; 591(1-3):171-6. PubMed ID: 18577383 [Abstract] [Full Text] [Related]
16. Mechanisms underlying endothelium-dependent, nitric oxide- and prostanoid-independent relaxation in monkey and dog coronary arteries. Fujioka H, Ayajiki K, Shinozaki K, Toda N, Okamura T. Naunyn Schmiedebergs Arch Pharmacol; 2002 Nov 04; 366(5):488-95. PubMed ID: 12382080 [Abstract] [Full Text] [Related]
17. Exercise training enhances relaxation of the isolated guinea-pig saphenous artery in response to acetylcholine. Choate JK, Kato K, Mohan RM. Exp Physiol; 2000 Jan 04; 85(1):103-8. PubMed ID: 10662899 [Abstract] [Full Text] [Related]
18. Effect of dietary docosahexaenoic acid on the endothelium-dependent vasorelaxation in diabetic rats. Goirand F, Ovide-Bordeaux S, Renaud JF, Grynberg A, Lacour B. Clin Exp Pharmacol Physiol; 2005 Mar 04; 32(3):184-90. PubMed ID: 15743401 [Abstract] [Full Text] [Related]
19. Differential effect of nitric oxide synthase inhibitors on acetylcholine-induced relaxation of rat pulmonary and celiac artery rings. Yaghi A, Paterson NA, McCormack DG. Can J Physiol Pharmacol; 1997 Apr 04; 75(4):279-86. PubMed ID: 9196853 [Abstract] [Full Text] [Related]
20. Endothelial mediators of the acetylcholine-induced relaxation of the rat femoral artery. Leung HS, Leung FP, Yao X, Ko WH, Chen ZY, Vanhoutte PM, Huang Y. Vascul Pharmacol; 2006 May 04; 44(5):299-308. PubMed ID: 16527547 [Abstract] [Full Text] [Related] Page: [Next] [New Search]