These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
129 related items for PubMed ID: 1314695
41. Competitive cAMP antagonists for cAMP-receptor proteins. Van Haastert PJ, Van Driel R, Jastorff B, Baraniak J, Stec WJ, De Wit RJ. J Biol Chem; 1984 Aug 25; 259(16):10020-4. PubMed ID: 6088478 [Abstract] [Full Text] [Related]
42. Reversal of resistance to adriamycin by 8-chloro-cyclic AMP in adriamycin-resistant HL-60 leukemia cells is associated with reduction of type I cyclic AMP-dependent protein kinase and cyclic AMP response element-binding protein DNA-binding activities. Rohlff C, Safa B, Rahman A, Cho-Chung YS, Klecker RW, Glazer RI. Mol Pharmacol; 1993 Mar 25; 43(3):372-9. PubMed ID: 8383802 [Abstract] [Full Text] [Related]
43. (Rp)- and (Sp)-8-piperidino-adenosine 3',5'-(cyclic)thiophosphates discriminate completely between site A and B of the regulatory subunits of cAMP-dependent protein kinase type I and II. Ogreid D, Dostmann W, Genieser HG, Niemann P, Døskeland SO, Jastorff B. Eur J Biochem; 1994 May 01; 221(3):1089-94. PubMed ID: 8181466 [Abstract] [Full Text] [Related]
44. Cooperative effect of 8-Cl-cAMP and rhGM-CSF on the differentiation of HL-60 human leukemia cells. Tortora G, Pepe S, Yokozaki H, Meissner S, Cho-Chung YS. Biochem Biophys Res Commun; 1991 Jun 28; 177(3):1133-40. PubMed ID: 2059204 [Abstract] [Full Text] [Related]
45. Interaction of cAMP derivatives with the 'stable' cAMP-binding site in the cAMP-dependent protein kinase type I. de Wit RJ, Hoppe J, Stec WJ, Baraniak J, Jastorff B. Eur J Biochem; 1982 Feb 28; 122(1):95-9. PubMed ID: 6277633 [Abstract] [Full Text] [Related]
46. A mechanistic and kinetic analysis of the interactions of the diastereoisomers of adenosine 3',5'-(cyclic)phosphorothioate with purified cyclic AMP-dependent protein kinase. Rothermel JD, Parker Botelho LH. Biochem J; 1988 May 01; 251(3):757-62. PubMed ID: 2843164 [Abstract] [Full Text] [Related]
47. Site-selective cAMP analogs at micromolar concentrations induce growth arrest and differentiation of acute promyelocytic, chronic myelocytic, and acute lymphocytic human leukemia cell lines. Tortora G, Tagliaferri P, Clair T, Colamonici O, Neckers LM, Robins RK, Cho-Chung YS. Blood; 1988 Jan 01; 71(1):230-3. PubMed ID: 2825845 [Abstract] [Full Text] [Related]
48. Inhibition of glycogenolysis in isolated rat hepatocytes by the Rp diastereomer of adenosine cyclic 3',5'-phosphorothioate. Rothermel JD, Stec WJ, Baraniak J, Jastorff B, Botelho LH. J Biol Chem; 1983 Oct 25; 258(20):12125-8. PubMed ID: 6313639 [Abstract] [Full Text] [Related]
49. Site-selective cAMP analogs induce nuclear translocation of the RII cAMP receptor protein in Ha-MuSV-transformed NIH/3T3 cells. Clair T, Ally S, Tagliaferri P, Robins RK, Cho-Chung YS. FEBS Lett; 1987 Nov 30; 224(2):377-84. PubMed ID: 2826232 [Abstract] [Full Text] [Related]
50. Site-selective cyclic AMP analogs provide a new approach in the control of cancer cell growth. Katsaros D, Tortora G, Tagliaferri P, Clair T, Ally S, Neckers L, Robins RK, Cho-Chung YS. FEBS Lett; 1987 Oct 19; 223(1):97-103. PubMed ID: 2822483 [Abstract] [Full Text] [Related]
51. cAMP-dependent protein kinase mediates hydrosmotic effect of vasopressin in collecting duct. Snyder HM, Noland TD, Breyer MD. Am J Physiol; 1992 Jul 19; 263(1 Pt 1):C147-53. PubMed ID: 1322038 [Abstract] [Full Text] [Related]