These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


178 related items for PubMed ID: 1314804

  • 1. Osmotic adaptation of Escherichia coli with a negligible proton motive force in the presence of carbonyl cyanide m-chlorophenylhydrazone.
    Ohyama T, Mugikura S, Nishikawa M, Igarashi K, Kobayashi H.
    J Bacteriol; 1992 May; 174(9):2922-8. PubMed ID: 1314804
    [Abstract] [Full Text] [Related]

  • 2. Lethal effect of carbonyl cyanide m-chlorophenylhydrazone on Escherichia coli and a halotolerant Brevibacterium species.
    Nagata S.
    Microbios; 1995 May; 81(327):73-83. PubMed ID: 7476556
    [Abstract] [Full Text] [Related]

  • 3. Proton motive force is not obligatory for growth of Escherichia coli.
    Kinoshita N, Unemoto T, Kobayashi H.
    J Bacteriol; 1984 Dec; 160(3):1074-7. PubMed ID: 6389506
    [Abstract] [Full Text] [Related]

  • 4. Experimental Evolution of Escherichia coli K-12 in the Presence of Proton Motive Force (PMF) Uncoupler Carbonyl Cyanide m-Chlorophenylhydrazone Selects for Mutations Affecting PMF-Driven Drug Efflux Pumps.
    Griffith JM, Basting PJ, Bischof KM, Wrona EP, Kunka KS, Tancredi AC, Moore JP, Hyman MRL, Slonczewski JL.
    Appl Environ Microbiol; 2019 Mar 01; 85(5):. PubMed ID: 30578262
    [Abstract] [Full Text] [Related]

  • 5. Effect of protonophore on growth of Escherichia coli.
    Nakano S, Onoda T.
    J Basic Microbiol; 1989 Mar 01; 29(3):163-9. PubMed ID: 2664119
    [Abstract] [Full Text] [Related]

  • 6. Effect of carbonyl cyanide m-chlorophenylhydrazone on Escherichia coli halotolerance.
    Ghoul M, Pommepuy M, Moillo-Batt A, Cormier M.
    Appl Environ Microbiol; 1989 Apr 01; 55(4):1040-3. PubMed ID: 2658803
    [Abstract] [Full Text] [Related]

  • 7. Effects of Ca2+ and a protonophore on growth of an Escherichia coli L-form.
    Onoda T, Oshima A.
    J Gen Microbiol; 1988 Nov 01; 134(11):3071-7. PubMed ID: 3076181
    [Abstract] [Full Text] [Related]

  • 8. Maintenance of a neutral cytoplasmic pH is not obligatory for growth of Escherichia coli and Streptococcus faecalis at an alkaline pH.
    Mugikura S, Nishikawa M, Igarashi K, Kobayashi H.
    J Biochem; 1990 Jul 01; 108(1):86-91. PubMed ID: 2121723
    [Abstract] [Full Text] [Related]

  • 9. Origins of the osmoprotective properties of betaine and proline in Escherichia coli K-12.
    Cayley S, Lewis BA, Record MT.
    J Bacteriol; 1992 Mar 01; 174(5):1586-95. PubMed ID: 1537801
    [Abstract] [Full Text] [Related]

  • 10. Accumulation of glutamate by osmotically stressed Escherichia coli is dependent on pH.
    Ogahara T, Ohno M, Takayama M, Igarashi K, Kobayashi H.
    J Bacteriol; 1995 Oct 01; 177(20):5987-90. PubMed ID: 7592353
    [Abstract] [Full Text] [Related]

  • 11. Regulation of intracellular pH and proton-potassium exchange in fermenting Escherichia coli grown anaerobically in alkaline medium.
    Trchounian A, Ohanjayan E, Zakharyan E.
    Membr Cell Biol; 1998 Oct 01; 12(1):67-78. PubMed ID: 9829260
    [Abstract] [Full Text] [Related]

  • 12. Effects of carbonylcyanide-m-chlorophenylhydrazone (CCCP) and acetate on Escherichia coli O157:H7 and K-12: uncoupling versus anion accumulation.
    Diez-Gonzalez F, Russell JB.
    FEMS Microbiol Lett; 1997 Jun 01; 151(1):71-6. PubMed ID: 9198284
    [Abstract] [Full Text] [Related]

  • 13. Mutants of Mycobacterium smegmatis unable to grow at acidic pH in the presence of the protonophore carbonyl cyanide m-chlorophenylhydrazone.
    Tran SL, Rao M, Simmers C, Gebhard S, Olsson K, Cook GM.
    Microbiology (Reading); 2005 Mar 01; 151(Pt 3):665-672. PubMed ID: 15758213
    [Abstract] [Full Text] [Related]

  • 14. The effect of the uncoupler carbonyl cyanide m-chlorophenylhydrazone on K+ transport, ATP level and intracellular pH of Chlorella fusca.
    Tromballa HW.
    Biochim Biophys Acta; 1981 Jun 12; 636(1):98-103. PubMed ID: 7284347
    [Abstract] [Full Text] [Related]

  • 15. Metabolic changes in Crithidia fasciculata accompanying physiological adaptation to growth in the presence of carbonyl cyanide m-chlorophenylhydrazone.
    Kutzman RS, Roberts JF.
    Comp Biochem Physiol B; 1979 Jun 12; 62(4):449-53. PubMed ID: 45556
    [Abstract] [Full Text] [Related]

  • 16. Effect of the proton motive force inhibitor carbonyl cyanide-m-chlorophenylhydrazone (CCCP) on Pseudomonas aeruginosa biofilm development.
    Ikonomidis A, Tsakris A, Kanellopoulou M, Maniatis AN, Pournaras S.
    Lett Appl Microbiol; 2008 Oct 12; 47(4):298-302. PubMed ID: 19241523
    [Abstract] [Full Text] [Related]

  • 17. In vitro translocation of protein across Escherichia coli membrane vesicles requires both the proton motive force and ATP.
    Yamane K, Ichihara S, Mizushima S.
    J Biol Chem; 1987 Feb 15; 262(5):2358-62. PubMed ID: 3029075
    [Abstract] [Full Text] [Related]

  • 18. Effect of sterilized human fecal extract on the sensitivity of Escherichia coli ATCC 25922 to enrofloxacin.
    Ahn Y, Sung K, Rafii F, Cerniglia CE.
    J Antibiot (Tokyo); 2012 Apr 15; 65(4):179-84. PubMed ID: 22274703
    [Abstract] [Full Text] [Related]

  • 19. Escherichia coli is able to grow with negligible sodium ion extrusion activity at alkaline pH.
    Ohyama T, Imaizumi R, Igarashi K, Kobayashi H.
    J Bacteriol; 1992 Dec 15; 174(23):7743-9. PubMed ID: 1332943
    [Abstract] [Full Text] [Related]

  • 20. A study of the primary effect of the uncoupler carbonyl cyanide m-chlorophenylhydrazone on membrane potential and conductance in Riccia fluitans.
    Felle H, Bentrup FW.
    Biochim Biophys Acta; 1977 Jan 04; 464(1):179-87. PubMed ID: 831789
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.