These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


319 related items for PubMed ID: 1315507

  • 1. Superoxide-independent reduction of vanadate by rat liver microsomes/NAD(P)H: vanadate reductase activity.
    Shi X, Dalal NS.
    Arch Biochem Biophys; 1992 May 15; 295(1):70-5. PubMed ID: 1315507
    [Abstract] [Full Text] [Related]

  • 2. Vanadate-dependent NAD(P)H oxidation by microsomal enzymes.
    Reif DW, Coulombe RA, Aust SD.
    Arch Biochem Biophys; 1989 Apr 15; 270(1):137-43. PubMed ID: 2494940
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Hydroxyl radical generation in the NADH/microsomal reduction of vanadate.
    Shi X, Dalal NS.
    Free Radic Res Commun; 1992 Apr 15; 17(6):369-76. PubMed ID: 1337535
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Increased NADPH- and NADH-dependent production of superoxide and hydroxyl radical by microsomes after chronic ethanol treatment.
    Rashba-Step J, Turro NJ, Cederbaum AI.
    Arch Biochem Biophys; 1993 Jan 15; 300(1):401-8. PubMed ID: 8380969
    [Abstract] [Full Text] [Related]

  • 11. Reductase and oxidase activity of rat liver cytochrome P450 with 2,3,5,6-tetramethylbenzoquinone as substrate.
    Goeptar AR, Te Koppele JM, Neve EP, Vermeulen NP.
    Chem Biol Interact; 1992 Aug 28; 83(3):249-69. PubMed ID: 1325294
    [Abstract] [Full Text] [Related]

  • 12. Reduction of chromium(VI) to chromium(V) by rat liver cytosolic and microsomal fractions: is DT-diaphorase involved?
    Aiyar J, De Flora S, Wetterhahn KE.
    Carcinogenesis; 1992 Jul 28; 13(7):1159-66. PubMed ID: 1379126
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Superoxide is responsible for the vanadate stimulation of NAD(P)H oxidation by biological membranes.
    Liochev S, Fridovich I.
    Arch Biochem Biophys; 1988 Jun 28; 263(2):299-304. PubMed ID: 2837149
    [Abstract] [Full Text] [Related]

  • 15. NADH-dependent polyvanadate reduction by microsomes.
    Patole MS, Kurup CK, Ramasarma T.
    Mol Cell Biochem; 1987 Jun 28; 75(2):161-7. PubMed ID: 3650695
    [Abstract] [Full Text] [Related]

  • 16. Vanadate-stimulated NADH oxidation requires polymeric vanadate, phosphate and superoxide.
    Patole MS, Gullapalli S, Ramasarma T.
    Free Radic Res Commun; 1988 Jun 28; 4(4):201-7. PubMed ID: 2852622
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. One-electron reductive bioactivation of 2,3,5,6-tetramethylbenzoquinone by cytochrome P450.
    Goeptar AR, te Koppele JM, van Maanen JM, Zoetemelk CE, Vermeulen NP.
    Biochem Pharmacol; 1992 Jan 22; 43(2):343-52. PubMed ID: 1310854
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.