These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


89 related items for PubMed ID: 1323042

  • 1. Choline- and ethanolaminephosphotransferases from Saccharomyces cerevisiae.
    Hjelmstad RH, Bell RM.
    Methods Enzymol; 1992; 209():272-9. PubMed ID: 1323042
    [No Abstract] [Full Text] [Related]

  • 2. Utilization of endogenous diacylglycerol for the synthesis of triacylglycerol, phosphatidylcholine and phosphatidylethanolamine by lipid particles from baker's yeast (Saccharomyces cerevisiae).
    Christiansen K.
    Biochim Biophys Acta; 1979 Sep 28; 574(3):448-60. PubMed ID: 226157
    [Abstract] [Full Text] [Related]

  • 3. sn-1,2-diacylglycerol choline- and ethanolaminephosphotransferases in Saccharomyces cerevisiae. Mixed micellar analysis of the CPT1 and EPT1 gene products.
    Hjelmstad RH, Bell RM.
    J Biol Chem; 1991 Mar 05; 266(7):4357-65. PubMed ID: 1847919
    [Abstract] [Full Text] [Related]

  • 4. PC and PE synthesis: mixed micellar analysis of the cholinephosphotransferase and ethanolaminephosphotransferase activities of human choline/ethanolamine phosphotransferase 1 (CEPT1).
    Wright MM, McMaster CR.
    Lipids; 2002 Jul 05; 37(7):663-72. PubMed ID: 12216837
    [Abstract] [Full Text] [Related]

  • 5. Chimeric enzymes. Structure-function analysis of segments of sn-1,2-diacylglycerol choline- and ethanolaminephosphotransferases.
    Hjelmstad RH, Morash SC, McMaster CR, Bell RM.
    J Biol Chem; 1994 Aug 19; 269(33):20995-1002. PubMed ID: 8063717
    [Abstract] [Full Text] [Related]

  • 6. Synthesis of molecular species of glycerophospholipids from diglyceride-labeled brain microsomes.
    Roberti R, Binaglia L, Porcellati G.
    J Lipid Res; 1980 May 19; 21(4):449-54. PubMed ID: 6247410
    [Abstract] [Full Text] [Related]

  • 7. Synthesis of phosphatidylcholine and phosphatidylethanolamine in relation to the concentration of membrane-bound diacylglycerols of rat lung microsomes.
    Rüstow B, Kunze D.
    Biochim Biophys Acta; 1984 May 11; 793(3):372-8. PubMed ID: 6712975
    [Abstract] [Full Text] [Related]

  • 8. The selective utilization of substrates in vivo by the phosphatidylethanolamine and phosphatidylcholine biosynthetic enzymes Ept1p and Cpt1p in yeast.
    Boumann HA, de Kruijff B, Heck AJ, de Kroon AI.
    FEBS Lett; 2004 Jul 02; 569(1-3):173-7. PubMed ID: 15225629
    [Abstract] [Full Text] [Related]

  • 9. The AAPT1 gene of soybean complements a cholinephosphotransferase-deficient mutant of yeast.
    Dewey RE, Wilson RF, Novitzky WP, Goode JH.
    Plant Cell; 1994 Oct 02; 6(10):1495-507. PubMed ID: 7994181
    [Abstract] [Full Text] [Related]

  • 10. Purification of ethanolaminephosphotransferase from bovine liver microsomes.
    Mancini A, Del Rosso F, Roberti R, Orvietani P, Coletti L, Binaglia L.
    Biochim Biophys Acta; 1999 Jan 29; 1437(1):80-92. PubMed ID: 9931448
    [Abstract] [Full Text] [Related]

  • 11. Control of phosphatidylethanolamine metabolism in yeast: diacylglycerol ethanolaminephosphotransferase and diacylglycerol cholinephosphotransferase are separate enzymes.
    Percy AK, Carson MA, Moore JF, Waechter CJ.
    Arch Biochem Biophys; 1984 Apr 29; 230(1):69-81. PubMed ID: 6324684
    [Abstract] [Full Text] [Related]

  • 12. Cholinephosphotransferase from mammalian sources.
    Cornell RB.
    Methods Enzymol; 1992 Apr 29; 209():267-72. PubMed ID: 1323041
    [No Abstract] [Full Text] [Related]

  • 13. Distribution of phospholipid biosynthetic enzymes among cell components of rat liver.
    Jelsema CL, Morré DJ.
    J Biol Chem; 1978 Nov 10; 253(21):7960-71. PubMed ID: 212440
    [No Abstract] [Full Text] [Related]

  • 14. Control of the CDPethanolamine pathway in mammalian cells: effect of CTP:phosphoethanolamine cytidylyltransferase overexpression and the amount of intracellular diacylglycerol.
    Bleijerveld OB, Klein W, Vaandrager AB, Helms JB, Houweling M.
    Biochem J; 2004 May 01; 379(Pt 3):711-9. PubMed ID: 14759225
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Differential selectivity of cholinephosphotransferase and ethanolaminephosphotransferase of Tetrahymena for diacylglycerol and alkylacylglycerol.
    Smith JD.
    J Biol Chem; 1985 Feb 25; 260(4):2064-8. PubMed ID: 2982806
    [Abstract] [Full Text] [Related]

  • 17. Phosphatidylcholine biosynthesis in Saccharomyces cerevisiae. Regulatory insights from studies employing null and chimeric sn-1,2-diacylglycerol choline- and ethanolaminephosphotransferases.
    McMaster CR, Bell RM.
    J Biol Chem; 1994 Nov 11; 269(45):28010-6. PubMed ID: 7961735
    [Abstract] [Full Text] [Related]

  • 18. Isolation and characterization of a yeast mutant defective in cholinephosphotransferase.
    Hosaka K, Yamashita S.
    Eur J Biochem; 1987 Jan 02; 162(1):7-13. PubMed ID: 3028792
    [Abstract] [Full Text] [Related]

  • 19. 1,2-diacylglycerol: CDPcholine cholinephosphotransferase.
    Kanoh H, Ohno K.
    Methods Enzymol; 1981 Jan 02; 71 Pt C():536-46. PubMed ID: 6268931
    [No Abstract] [Full Text] [Related]

  • 20. Functional redundancy of CDP-ethanolamine and CDP-choline pathway enzymes in phospholipid biosynthesis: ethanolamine-dependent effects on steady-state membrane phospholipid composition in Saccharomyces cerevisiae.
    McGee TP, Skinner HB, Bankaitis VA.
    J Bacteriol; 1994 Nov 02; 176(22):6861-8. PubMed ID: 7961445
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.