These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


137 related items for PubMed ID: 1325911

  • 1. Activation by ATP of a proton-conducting pathway in yeast mitochondria.
    Prieto S, Bouillaud F, Ricquier D, Rial E.
    Eur J Biochem; 1992 Sep 01; 208(2):487-91. PubMed ID: 1325911
    [Abstract] [Full Text] [Related]

  • 2. Conditions allowing different states of ATP- and GDP-induced permeability in mitochondria from different strains of Saccharomyces cerevisiae.
    Roucou X, Manon S, Guérin M.
    Biochim Biophys Acta; 1997 Feb 21; 1324(1):120-32. PubMed ID: 9059505
    [Abstract] [Full Text] [Related]

  • 3. The mechanism for the ATP-induced uncoupling of respiration in mitochondria of the yeast Saccharomyces cerevisiae.
    Prieto S, Bouillaud F, Rial E.
    Biochem J; 1995 May 01; 307 ( Pt 3)(Pt 3):657-61. PubMed ID: 7741693
    [Abstract] [Full Text] [Related]

  • 4. Characterization of the respiration-induced yeast mitochondrial permeability transition pore.
    Bradshaw PC, Pfeiffer DR.
    Yeast; 2013 Dec 01; 30(12):471-83. PubMed ID: 24166770
    [Abstract] [Full Text] [Related]

  • 5. Loss of NAD(H) from swollen yeast mitochondria.
    Bradshaw PC, Pfeiffer DR.
    BMC Biochem; 2006 Jan 24; 7():3. PubMed ID: 16433924
    [Abstract] [Full Text] [Related]

  • 6. Biphasic oxidation of mitochondrial NAD(P)H.
    Lemeshko VV.
    Biochem Biophys Res Commun; 2002 Feb 15; 291(1):170-5. PubMed ID: 11829479
    [Abstract] [Full Text] [Related]

  • 7. Investigation of the yeast mitochondrial unselective channel in intact and permeabilized spheroplasts.
    Manon S, Guérin M.
    Biochem Mol Biol Int; 1998 Mar 15; 44(3):565-75. PubMed ID: 9556218
    [Abstract] [Full Text] [Related]

  • 8. Interactions between glucose metabolism and oxidative phosphorylations on respiratory-competent Saccharomyces cerevisiae cells.
    Beauvoit B, Rigoulet M, Bunoust O, Raffard G, Canioni P, Guérin B.
    Eur J Biochem; 1993 May 15; 214(1):163-72. PubMed ID: 8508788
    [Abstract] [Full Text] [Related]

  • 9. Changes in pyridine nucleotide levels alter oxygen consumption and extra-mitochondrial phosphates in isolated mitochondria: a 31P-NMR and NAD(P)H fluorescence study.
    Koretsky AP, Balaban RS.
    Biochim Biophys Acta; 1987 Oct 07; 893(3):398-408. PubMed ID: 2888484
    [Abstract] [Full Text] [Related]

  • 10. Oxidative phosphorylation in intact hepatocytes: quantitative characterization of the mechanisms of change in efficiency and cellular consequences.
    Leverve X, Sibille B, Devin A, Piquet MA, Espié P, Rigoulet M.
    Mol Cell Biochem; 1998 Jul 07; 184(1-2):53-65. PubMed ID: 9746312
    [Abstract] [Full Text] [Related]

  • 11. Active proton leak in mitochondria: a new way to regulate substrate oxidation.
    Mourier A, Devin A, Rigoulet M.
    Biochim Biophys Acta; 2010 Feb 07; 1797(2):255-61. PubMed ID: 19896922
    [Abstract] [Full Text] [Related]

  • 12. The nature and regulation of the ATP-induced anion permeability in Saccharomyces cerevisiae mitochondria.
    Prieto S, Bouillaud F, Rial E.
    Arch Biochem Biophys; 1996 Oct 01; 334(1):43-9. PubMed ID: 8837737
    [Abstract] [Full Text] [Related]

  • 13. The causes and functions of mitochondrial proton leak.
    Brand MD, Chien LF, Ainscow EK, Rolfe DF, Porter RK.
    Biochim Biophys Acta; 1994 Aug 30; 1187(2):132-9. PubMed ID: 8075107
    [Abstract] [Full Text] [Related]

  • 14. Quantitative analysis of some mechanisms affecting the yield of oxidative phosphorylation: dependence upon both fluxes and forces.
    Rigoulet M, Leverve X, Fontaine E, Ouhabi R, Guérin B.
    Mol Cell Biochem; 1998 Jul 30; 184(1-2):35-52. PubMed ID: 9746311
    [Abstract] [Full Text] [Related]

  • 15. Prostaglandin F2alpha potentiates the calcium dependent activation of mitochondrial metabolism in luteal cells.
    Pitter JG, Szanda G, Duchen MR, Spät A.
    Cell Calcium; 2005 Jan 30; 37(1):35-44. PubMed ID: 15541462
    [Abstract] [Full Text] [Related]

  • 16. Cytosolic redox metabolism in aerobic chemostat cultures of Saccharomyces cerevisiae.
    Påhlman IL, Gustafsson L, Rigoulet M, Larsson C.
    Yeast; 2001 May 30; 18(7):611-20. PubMed ID: 11329172
    [Abstract] [Full Text] [Related]

  • 17. ATP opens an electrophoretic potassium transport pathway in respiring yeast mitochondria.
    Roucou X, Manon S, Guerin M.
    FEBS Lett; 1995 May 08; 364(2):161-4. PubMed ID: 7750562
    [Abstract] [Full Text] [Related]

  • 18. Oxidation of pyridine nucleotides and depletion of ATP and ADP during calcium- and inorganic phosphate-induced mitochondrial permeability transition.
    Savage MK, Reed DJ.
    Biochem Biophys Res Commun; 1994 May 16; 200(3):1615-20. PubMed ID: 8185617
    [Abstract] [Full Text] [Related]

  • 19. Identification of ATP-NADH kinase isozymes and their contribution to supply of NADP(H) in Saccharomyces cerevisiae.
    Shi F, Kawai S, Mori S, Kono E, Murata K.
    FEBS J; 2005 Jul 16; 272(13):3337-49. PubMed ID: 15978040
    [Abstract] [Full Text] [Related]

  • 20. Brown-adipose-tissue mitochondria: photoaffinity labelling of the regulatory site of energy dissipation.
    Heaton GM, Wagenvoord RJ, Kemp A, Nicholls DG.
    Eur J Biochem; 1978 Jan 16; 82(2):515-21. PubMed ID: 624284
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.