These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
251 related items for PubMed ID: 1326533
1. Reconstitution of superoxide-forming NADPH oxidase activity with cytochrome b558 purified from porcine neutrophils. Requirement of a membrane-bound flavin enzyme for reconstitution of activity. Miki T, Yoshida LS, Kakinuma K. J Biol Chem; 1992 Sep 15; 267(26):18695-701. PubMed ID: 1326533 [Abstract] [Full Text] [Related]
2. NADPH-cytochrome c reductase from human neutrophil membranes: purification, characterization and localization. Nisimoto Y, Otsuka-Murakami H, Iwata S. Biochem J; 1994 Feb 01; 297 ( Pt 3)(Pt 3):585-93. PubMed ID: 8110198 [Abstract] [Full Text] [Related]
3. Reconstitution of the partially purified membrane component of the superoxide-generating NADPH oxidase of pig neutrophils with phospholipid. Nozaki M, Takeshige K, Sumimoto H, Minakami S. Eur J Biochem; 1990 Jan 26; 187(2):335-40. PubMed ID: 2153545 [Abstract] [Full Text] [Related]
4. Purified leukocyte cytochrome b558 incorporated into liposomes catalyzes a cytosolic factor dependent diaphorase activity. Li J, Guillory RJ. Biochemistry; 1997 May 06; 36(18):5529-37. PubMed ID: 9154936 [Abstract] [Full Text] [Related]
5. Reconstitution of flavin-depleted neutrophil flavocytochrome b558 with 8-mercapto-FAD and characterization of the flavin-reconstituted enzyme. Nisimoto Y, Otsuka-Murakami H, Lambeth DJ. J Biol Chem; 1995 Jul 07; 270(27):16428-34. PubMed ID: 7608214 [Abstract] [Full Text] [Related]
6. Superoxide production by cytochrome b558 purified from neutrophils in a reconstituted system with an exogenous reductase. Isogai Y, Shiro Y, Nasuda-Kouyama A, Iizuka T. J Biol Chem; 1991 Jul 25; 266(21):13481-4. PubMed ID: 1649821 [Abstract] [Full Text] [Related]
7. Composition of partially purified NADPH oxidase from pig neutrophils. Bellavite P, Jones OT, Cross AR, Papini E, Rossi F. Biochem J; 1984 Nov 01; 223(3):639-48. PubMed ID: 6439185 [Abstract] [Full Text] [Related]
8. The membrane-associated component of the amphiphile-activated, cytosol-dependent superoxide-forming NADPH oxidase of macrophages is identical to cytochrome b559. Knoller S, Shpungin S, Pick E. J Biol Chem; 1991 Feb 15; 266(5):2795-804. PubMed ID: 1847135 [Abstract] [Full Text] [Related]
9. Assessment of the flavoprotein nature of the redox core of neutrophil NADPH oxidase. Escriou V, Laporte F, Vignais PV. Biochem Biophys Res Commun; 1996 Feb 27; 219(3):930-5. PubMed ID: 8645281 [Abstract] [Full Text] [Related]
10. Electron transfer reactions in the NADPH oxidase system of neutrophils--involvement of an NADPH-cytochrome c reductase in the oxidase system. Fujii H, Kakinuma K. Biochim Biophys Acta; 1991 Nov 12; 1095(3):201-9. PubMed ID: 1659905 [Abstract] [Full Text] [Related]
11. Cytochrome b558: the flavin-binding component of the phagocyte NADPH oxidase. Rotrosen D, Yeung CL, Leto TL, Malech HL, Kwong CH. Science; 1992 Jun 05; 256(5062):1459-62. PubMed ID: 1318579 [Abstract] [Full Text] [Related]
12. Cytochrome b558, a component of the phagocyte NADPH oxidase, is a flavoprotein. Sumimoto H, Sakamoto N, Nozaki M, Sakaki Y, Takeshige K, Minakami S. Biochem Biophys Res Commun; 1992 Aug 14; 186(3):1368-75. PubMed ID: 1324665 [Abstract] [Full Text] [Related]
13. NADPH oxidase of human neutrophils. Subcellular localization and characterization of an arachidonate-activatable superoxide-generating system. Clark RA, Leidal KG, Pearson DW, Nauseef WM. J Biol Chem; 1987 Mar 25; 262(9):4065-74. PubMed ID: 3031060 [Abstract] [Full Text] [Related]
14. Binding of FAD to cytochrome b558 is facilitated during activation of the phagocyte NADPH oxidase, leading to superoxide production. Hashida S, Yuzawa S, Suzuki NN, Fujioka Y, Takikawa T, Sumimoto H, Inagaki F, Fujii H. J Biol Chem; 2004 Jun 18; 279(25):26378-86. PubMed ID: 15102859 [Abstract] [Full Text] [Related]
15. Properties of the NADPH dehydrogenase component of the oxidase complex from rabbit peritoneal neutrophils: reconstitution of an oxidase activity with the dehydrogenase component and a membrane extract. Laporte F, Doussiere J, Vignais PV. Biochem Biophys Res Commun; 1990 Mar 16; 167(2):790-7. PubMed ID: 2157416 [Abstract] [Full Text] [Related]
16. Purification and characterization of a membrane-bound NADPH-cytochrome c reductase capable of catalyzing menadione-dependent O2- formation in guinea pig polymorphonuclear leukocytes. Sakane F, Takahashi K, Koyama J. J Biochem; 1984 Sep 16; 96(3):671-8. PubMed ID: 6094521 [Abstract] [Full Text] [Related]
17. Characterization of superoxide dismutase-insensitive cytochrome c reductase activity in HL-60 cytosol as NADPH-cytochrome P450 reductase. Nisimoto Y, Otsuka-Murakami H, Iwata S, Isogai Y, Iizuka T. Arch Biochem Biophys; 1993 May 16; 302(2):315-21. PubMed ID: 8489236 [Abstract] [Full Text] [Related]
18. Studies on the nature and activation of O2(-)-forming NADPH oxidase of leukocytes. Identification of a phosphorylated component of the active enzyme. Bellavite P, Papini E, Zeni L, Della Bianca V, Rossi F. Free Radic Res Commun; 1985 May 16; 1(1):11-29. PubMed ID: 2850266 [Abstract] [Full Text] [Related]
19. Biochemical and immunochemical properties of B lymphocyte cytochrome b558. Batot G, Paclet MH, Doussière J, Vergnaud S, Martel C, Vignais PV, Morel F. Biochim Biophys Acta; 1998 Mar 05; 1406(2):188-202. PubMed ID: 9573361 [Abstract] [Full Text] [Related]
20. Diphenylene iodonium as an inhibitor of the NADPH oxidase complex of bovine neutrophils. Factors controlling the inhibitory potency of diphenylene iodonium in a cell-free system of oxidase activation. Doussière J, Vignais PV. Eur J Biochem; 1992 Aug 15; 208(1):61-71. PubMed ID: 1324836 [Abstract] [Full Text] [Related] Page: [Next] [New Search]