These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


195 related items for PubMed ID: 1327109

  • 1. Minimal kinetic mechanism for misincorporation by DNA polymerase I (Klenow fragment).
    Eger BT, Benkovic SJ.
    Biochemistry; 1992 Sep 29; 31(38):9227-36. PubMed ID: 1327109
    [Abstract] [Full Text] [Related]

  • 2. Kinetic mechanism of DNA polymerase I (Klenow fragment): identification of a second conformational change and evaluation of the internal equilibrium constant.
    Dahlberg ME, Benkovic SJ.
    Biochemistry; 1991 May 21; 30(20):4835-43. PubMed ID: 1645180
    [Abstract] [Full Text] [Related]

  • 3. Mechanism of DNA replication fidelity for three mutants of DNA polymerase I: Klenow fragment KF(exo+), KF(polA5), and KF(exo-).
    Eger BT, Kuchta RD, Carroll SS, Benkovic PA, Dahlberg ME, Joyce CM, Benkovic SJ.
    Biochemistry; 1991 Feb 05; 30(5):1441-8. PubMed ID: 1991125
    [Abstract] [Full Text] [Related]

  • 4. Steady-state and pre-steady-state kinetic analysis of dNTP insertion opposite 8-oxo-7,8-dihydroguanine by Escherichia coli polymerases I exo- and II exo-.
    Lowe LG, Guengerich FP.
    Biochemistry; 1996 Jul 30; 35(30):9840-9. PubMed ID: 8703958
    [Abstract] [Full Text] [Related]

  • 5. The nucleotide analog 2-aminopurine as a spectroscopic probe of nucleotide incorporation by the Klenow fragment of Escherichia coli polymerase I and bacteriophage T4 DNA polymerase.
    Frey MW, Sowers LC, Millar DP, Benkovic SJ.
    Biochemistry; 1995 Jul 18; 34(28):9185-92. PubMed ID: 7619819
    [Abstract] [Full Text] [Related]

  • 6. Kinetic characterization of the polymerase and exonuclease activities of the gene 43 protein of bacteriophage T4.
    Capson TL, Peliska JA, Kaboord BF, Frey MW, Lively C, Dahlberg M, Benkovic SJ.
    Biochemistry; 1992 Nov 17; 31(45):10984-94. PubMed ID: 1332748
    [Abstract] [Full Text] [Related]

  • 7. Analysis of nucleotide insertion and extension at 8-oxo-7,8-dihydroguanine by replicative T7 polymerase exo- and human immunodeficiency virus-1 reverse transcriptase using steady-state and pre-steady-state kinetics.
    Furge LL, Guengerich FP.
    Biochemistry; 1997 May 27; 36(21):6475-87. PubMed ID: 9174365
    [Abstract] [Full Text] [Related]

  • 8. Kinetic mechanism of DNA polymerase I (Klenow).
    Kuchta RD, Mizrahi V, Benkovic PA, Johnson KA, Benkovic SJ.
    Biochemistry; 1987 Dec 15; 26(25):8410-7. PubMed ID: 3327522
    [Abstract] [Full Text] [Related]

  • 9. Pre-steady-state kinetic analysis of processive DNA replication including complete characterization of an exonuclease-deficient mutant.
    Patel SS, Wong I, Johnson KA.
    Biochemistry; 1991 Jan 15; 30(2):511-25. PubMed ID: 1846298
    [Abstract] [Full Text] [Related]

  • 10. Kinetic analysis of the coding properties of O6-methylguanine in DNA: the crucial role of the conformation of the phosphodiester bond.
    Tan HB, Swann PF, Chance EM.
    Biochemistry; 1994 May 03; 33(17):5335-46. PubMed ID: 8172907
    [Abstract] [Full Text] [Related]

  • 11. Real-time surface plasmon resonance study of biomolecular interactions between polymerase and bulky mutagenic DNA lesions.
    Xu L, Vaidyanathan VG, Cho BP.
    Chem Res Toxicol; 2014 Oct 20; 27(10):1796-807. PubMed ID: 25195494
    [Abstract] [Full Text] [Related]

  • 12. Binary and ternary binding affinities between exonuclease-deficient Klenow fragment (Kf-exo(-)) and various arylamine DNA lesions characterized by surface plasmon resonance.
    Vaidyanathan VG, Xu L, Cho BP.
    Chem Res Toxicol; 2012 Aug 20; 25(8):1568-70. PubMed ID: 22804627
    [Abstract] [Full Text] [Related]

  • 13. An induced-fit kinetic mechanism for DNA replication fidelity: direct measurement by single-turnover kinetics.
    Wong I, Patel SS, Johnson KA.
    Biochemistry; 1991 Jan 15; 30(2):526-37. PubMed ID: 1846299
    [Abstract] [Full Text] [Related]

  • 14. Kinetic mechanism whereby DNA polymerase I (Klenow) replicates DNA with high fidelity.
    Kuchta RD, Benkovic P, Benkovic SJ.
    Biochemistry; 1988 Sep 06; 27(18):6716-25. PubMed ID: 3058205
    [Abstract] [Full Text] [Related]

  • 15. Importance of the C2, N7, and C8 positions to the mutagenic potential of 8-Oxo-2'-deoxyguanosine with two A family polymerases.
    Hamm ML, Crowley KA, Ghio M, Del Giorno L, Gustafson MA, Kindler KE, Ligon CW, Lindell MA, McFadden EJ, Siekavizza-Robles C, Summers MR.
    Biochemistry; 2011 Dec 13; 50(49):10713-23. PubMed ID: 22081979
    [Abstract] [Full Text] [Related]

  • 16. [Interaction of dNTP-binding sites of human DNA polymerase alpha and The Klenow fragment of Escherichia coli DNA polymerase I with nucleotides, pyrophosphate and their analogs].
    Nevinskiĭ GA, Potapova IA, Tarusova NB, Khalabuda OV, Khomov VV.
    Mol Biol (Mosk); 1990 Dec 13; 24(1):104-16. PubMed ID: 2161489
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Contribution of the 3'- to 5'-exonuclease activity of herpes simplex virus type 1 DNA polymerase to the fidelity of DNA synthesis.
    Song L, Chaudhuri M, Knopf CW, Parris DS.
    J Biol Chem; 2004 Apr 30; 279(18):18535-43. PubMed ID: 14982924
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Deoxynucleoside triphosphate and pyrophosphate binding sites in the catalytically competent ternary complex for the polymerase reaction catalyzed by DNA polymerase I (Klenow fragment).
    Astatke M, Grindley ND, Joyce CM.
    J Biol Chem; 1995 Jan 27; 270(4):1945-54. PubMed ID: 7829532
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.