These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


171 related items for PubMed ID: 1329611

  • 1. Abnormalities of somatosensory evoked potentials in the quinolinic acid model of Huntington's disease: evidence that basal ganglia modulate sensory cortical input.
    Schwarz M, Block F, Töpper R, Sontag KH, Noth J.
    Ann Neurol; 1992 Sep; 32(3):358-64. PubMed ID: 1329611
    [Abstract] [Full Text] [Related]

  • 2. Visual evoked potentials in the rat quinolinic acid model of Huntington's disease.
    Schwarz M, Block F.
    Neurosci Lett; 1993 Apr 02; 152(1-2):81-3. PubMed ID: 8390629
    [Abstract] [Full Text] [Related]

  • 3. Progressive behavioural changes in the spatial open-field in the quinolinic acid rat model of Huntington's disease.
    Scattoni ML, Valanzano A, Popoli P, Pezzola A, Reggio R, Calamandrei G.
    Behav Brain Res; 2004 Jul 09; 152(2):375-83. PubMed ID: 15196806
    [Abstract] [Full Text] [Related]

  • 4. Adenosine A2A receptor blockade before striatal excitotoxic lesions prevents long term behavioural disturbances in the quinolinic rat model of Huntington's disease.
    Scattoni ML, Valanzano A, Pezzola A, March ZD, Fusco FR, Popoli P, Calamandrei G.
    Behav Brain Res; 2007 Jan 25; 176(2):216-21. PubMed ID: 17123640
    [Abstract] [Full Text] [Related]

  • 5. Quinolinic acid released from polymeric brain implants causes behavioral and neuroanatomical alterations in a rodent model of Huntington's disease.
    Haik KL, Shear DA, Schroeder U, Sabel BA, Dunbar GL.
    Exp Neurol; 2000 Jun 25; 163(2):430-9. PubMed ID: 10833318
    [Abstract] [Full Text] [Related]

  • 6. The IGF-I amino-terminal tripeptide glycine-proline-glutamate (GPE) is neuroprotective to striatum in the quinolinic acid lesion animal model of Huntington's disease.
    Alexi T, Hughes PE, van Roon-Mom WM, Faull RL, Williams CE, Clark RG, Gluckman PD.
    Exp Neurol; 1999 Sep 25; 159(1):84-97. PubMed ID: 10486177
    [Abstract] [Full Text] [Related]

  • 7. Remote microglial activation in the quinolinic acid model of Huntington's disease.
    Töpper R, Gehrmann J, Schwarz M, Block F, Noth J, Kreutzberg GW.
    Exp Neurol; 1993 Oct 25; 123(2):271-83. PubMed ID: 8405289
    [Abstract] [Full Text] [Related]

  • 8. Deficits induced by quinolinic acid lesion to the striatum in a position discrimination and reversal task are ameliorated by permanent and temporary lesion to the globus pallidus: a potential novel treatment in a rat model of Huntington's disease.
    Joel D, Ayalon L, Tarrasch R, Weiner I.
    Mov Disord; 2003 Dec 25; 18(12):1499-507. PubMed ID: 14673887
    [Abstract] [Full Text] [Related]

  • 9. Neurogenesis in the striatum of the quinolinic acid lesion model of Huntington's disease.
    Tattersfield AS, Croon RJ, Liu YW, Kells AP, Faull RL, Connor B.
    Neuroscience; 2004 Dec 25; 127(2):319-32. PubMed ID: 15262322
    [Abstract] [Full Text] [Related]

  • 10. Short-term lithium treatment promotes neuronal survival and proliferation in rat striatum infused with quinolinic acid, an excitotoxic model of Huntington's disease.
    Senatorov VV, Ren M, Kanai H, Wei H, Chuang DM.
    Mol Psychiatry; 2004 Apr 25; 9(4):371-85. PubMed ID: 14702090
    [Abstract] [Full Text] [Related]

  • 11. Behavioral and anatomical effects of quinolinic acid in the striatum of the hemiparkinsonian rat.
    Olds ME, Jacques DB, Kopyov O.
    Synapse; 2005 Jan 25; 55(1):26-36. PubMed ID: 15499610
    [Abstract] [Full Text] [Related]

  • 12. Simultaneous intrastriatal 6-hydroxydopamine and quinolinic acid injection: a model of early-stage striatonigral degeneration.
    Ghorayeb I, Puschban Z, Fernagut PO, Scherfler C, Rouland R, Wenning GK, Tison F.
    Exp Neurol; 2001 Jan 25; 167(1):133-47. PubMed ID: 11161601
    [Abstract] [Full Text] [Related]

  • 13. Blockade of quinolinic acid-induced neurotoxicity by pyruvate is associated with inhibition of glial activation in a model of Huntington's disease.
    Ryu JK, Kim SU, McLarnon JG.
    Exp Neurol; 2004 May 25; 187(1):150-9. PubMed ID: 15081596
    [Abstract] [Full Text] [Related]

  • 14. Amelioration of behavioral deficits in a rat model of Huntington's disease by an excitotoxic lesion to the globus pallidus.
    Ayalon L, Doron R, Weiner I, Joel D.
    Exp Neurol; 2004 Mar 25; 186(1):46-58. PubMed ID: 14980809
    [Abstract] [Full Text] [Related]

  • 15. Chronic administration of quinolinic acid in the rat striatum causes spatial learning deficits in a radial arm water maze task.
    Shear DA, Dong J, Haik-Creguer KL, Bazzett TJ, Albin RL, Dunbar GL.
    Exp Neurol; 1998 Apr 25; 150(2):305-11. PubMed ID: 9527900
    [Abstract] [Full Text] [Related]

  • 16. Comparison of intrastriatal injections of quinolinic acid and 3-nitropropionic acid for use in animal models of Huntington's disease.
    Shear DA, Dong J, Gundy CD, Haik-Creguer KL, Dunbar GL.
    Prog Neuropsychopharmacol Biol Psychiatry; 1998 Oct 25; 22(7):1217-40. PubMed ID: 9829299
    [Abstract] [Full Text] [Related]

  • 17. Striatal modulation of cAMP-response-element-binding protein (CREB) after excitotoxic lesions: implications with neuronal vulnerability in Huntington's disease.
    Giampà C, DeMarch Z, D'Angelo V, Morello M, Martorana A, Sancesario G, Bernardi G, Fusco FR.
    Eur J Neurosci; 2006 Jan 25; 23(1):11-20. PubMed ID: 16420411
    [Abstract] [Full Text] [Related]

  • 18. Spermine improves recognition memory deficit in a rodent model of Huntington's disease.
    Velloso NA, Dalmolin GD, Gomes GM, Rubin MA, Canas PM, Cunha RA, Mello CF.
    Neurobiol Learn Mem; 2009 Nov 25; 92(4):574-80. PubMed ID: 19632348
    [Abstract] [Full Text] [Related]

  • 19. Excitotoxic brain damage involves early peroxynitrite formation in a model of Huntington's disease in rats: protective role of iron porphyrinate 5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrinate iron (III).
    Pérez-De La Cruz V, González-Cortés C, Galván-Arzate S, Medina-Campos ON, Pérez-Severiano F, Ali SF, Pedraza-Chaverrí J, Santamaría A.
    Neuroscience; 2005 Nov 25; 135(2):463-74. PubMed ID: 16111817
    [Abstract] [Full Text] [Related]

  • 20. Differences between primary somatosensory cortex- and vertex-derived somatosensory-evoked potentials in the rat.
    Stienen PJ, van den Brom WE, de Groot HN, Venker-van Haagen AJ, Hellebrekers LJ.
    Brain Res; 2004 Dec 31; 1030(2):256-66. PubMed ID: 15571674
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.