These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Effects of calcium channel blockers on the kinetics of voltage-dependent changes in synaptosomal calcium concentrations. Thomas MM, Puligandla PS, Dunn SM. Brain Res; 1994 Jan 28; 635(1-2):9-17. PubMed ID: 8173983 [Abstract] [Full Text] [Related]
3. Voltage inactivation of Ca2+ entry and secretion associated with N- and P/Q-type but not L-type Ca2+ channels of bovine chromaffin cells. Villarroya M, Olivares R, Ruíz A, Cano-Abad MF, de Pascual R, Lomax RB, López MG, Mayorgas I, Gandía L, García AG. J Physiol; 1999 Apr 15; 516 ( Pt 2)(Pt 2):421-32. PubMed ID: 10087342 [Abstract] [Full Text] [Related]
4. Calcium channels in rat brain synaptosomes: identification and pharmacological characterization. High affinity blockade by organic Ca2+ channel blockers. Turner TJ, Goldin SM. J Neurosci; 1985 Mar 15; 5(3):841-9. PubMed ID: 2579220 [Abstract] [Full Text] [Related]
5. The early time course of potassium-stimulated calcium uptake in presynaptic nerve terminals isolated from rat brain. Nachshen DA. J Physiol; 1985 Apr 15; 361():251-68. PubMed ID: 2580977 [Abstract] [Full Text] [Related]
6. Voltage-sensitive Ca2+ channels in rat striatal synaptosomes: role on the [Ca2+]i responses to membrane depolarization. Duarte CB, Cristóvão AJ, Carvalho AP, Carvalho CM. Neurochem Int; 1996 Jan 15; 28(1):67-75. PubMed ID: 8746766 [Abstract] [Full Text] [Related]
7. Voltage-sensitive calcium flux into bovine chromaffin cells occurs through dihydropyridine-sensitive and dihydropyridine- and omega-conotoxin-insensitive pathways. Rosario LM, Soria B, Feuerstein G, Pollard HB. Neuroscience; 1989 Jan 15; 29(3):735-47. PubMed ID: 2739907 [Abstract] [Full Text] [Related]
8. High calcium permeability of serotonin 5-HT3 receptors on presynaptic nerve terminals from rat striatum. Rondé P, Nichols RA. J Neurochem; 1998 Mar 15; 70(3):1094-103. PubMed ID: 9489730 [Abstract] [Full Text] [Related]
9. Calcium-activated potassium channels in isolated presynaptic nerve terminals from rat brain. Bartschat DK, Blaustein MP. J Physiol; 1985 Apr 15; 361():441-57. PubMed ID: 2580982 [Abstract] [Full Text] [Related]
15. Calcium influx and calcium current in single synaptic terminals of goldfish retinal bipolar neurons. Heidelberger R, Matthews G. J Physiol; 1992 Feb 15; 447():235-56. PubMed ID: 1317429 [Abstract] [Full Text] [Related]
16. Na(+)-Ca2+ exchange activity in central nerve endings. I. Ionic conditions that discriminate 45Ca2+ uptake through the exchanger from that occurring through voltage-operated Ca2+ channels. Taglialatela M, Di Renzo G, Annunziato L. Mol Pharmacol; 1990 Sep 15; 38(3):385-92. PubMed ID: 2169581 [Abstract] [Full Text] [Related]
17. Effects of charge and lipophilicity on mercurial-induced reduction of 45Ca2+ uptake in isolated nerve terminals of the rat. Hewett SJ, Atchison WD. Toxicol Appl Pharmacol; 1992 Apr 15; 113(2):267-73. PubMed ID: 1313995 [Abstract] [Full Text] [Related]
18. Calcium changes induced by presynaptic 5-hydroxytryptamine-3 serotonin receptors on isolated terminals from various regions of the rat brain. Nayak SV, Rondé P, Spier AD, Lummis SC, Nichols RA. Neuroscience; 1999 Apr 15; 91(1):107-17. PubMed ID: 10336063 [Abstract] [Full Text] [Related]
19. Passive transfer of Lambert-Eaton myasthenic syndrome induces dihydropyridine sensitivity of ICa in mouse motor nerve terminals. Xu YF, Hewett SJ, Atchison WD. J Neurophysiol; 1998 Sep 15; 80(3):1056-69. PubMed ID: 9744921 [Abstract] [Full Text] [Related]